Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the given system of linear equations using the Gauss-Jordan method, we first write the augmented matrix:
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ -1 & -1 & 2 & -4 \\ 3 & 5 & -7 & -14 \end{bmatrix} \][/tex]
We will perform row operations to transform this matrix into reduced row echelon form (RREF).
1. Normalize Row 1:
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ -1 & -1 & 2 & -4 \\ 3 & 5 & -7 & -14 \end{bmatrix} \][/tex]
Row 1 is already normalized.
2. Eliminate [tex]\(x\)[/tex] in Rows 2 and 3:
- Row 2: [tex]\( R_2 = R_2 + R_1 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 0 & 3 & 4 \\ 3 & 5 & -7 & -14 \end{bmatrix} \][/tex]
- Row 3: [tex]\( R_3 = R_3 - 3R_1 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 2 & -10 & -38 \end{bmatrix} \][/tex]
3. Normalize Row 2:
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 2 & -10 & -38 \end{bmatrix} \][/tex]
Row 2 can be normalized by dividing by the leading coefficient (in this case, the leading term is 3):
- [tex]\( R_2 = \frac{1}{3} R_2 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 2 & -10 & -38 \end{bmatrix} \][/tex]
4. Eliminate [tex]\(z\)[/tex] from Rows 1 and 3:
- Row 1: [tex]\( R_1 = R_1 - R_2 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 1 & 0 & \frac{20}{3} \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 2 & -10 & -38 \end{bmatrix} \][/tex]
- Row 3: [tex]\( R_3 = R_3 + 10R_2 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 2 & 0 & -\frac{10}{3} \end{bmatrix} \][/tex]
5. Normalize Row 3:
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 2 & 0 & -\frac{10}{3} \end{bmatrix} \][/tex]
Row 3 can be normalized by dividing by the leading coefficient (in this case, the leading term is 2):
- [tex]\( R_3 = \frac{1}{2} R_3 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 1 & 0 & -\frac{5}{3} \end{bmatrix} \][/tex]
6. Eliminate [tex]\(y\)[/tex] from Rows 1 and 2:
- Row 1: [tex]\( R_1 = R_1 - R_3 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 0 & 1 & \frac{44}{3} \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 1 & 0 & -\frac{5}{3} \end{bmatrix} \][/tex]
- Row 2: since we already know that it only has 0 in the first two coefficients before normalization so it doesn't change much).
[tex]\[ \begin{bmatrix} 1 & 0 & 1 & \frac{44}{3} \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 1 & 0 & -\frac{5}{3} \end{bmatrix} \][/tex]
7. Eliminate [tex]\(z\)[/tex] from Row 1:
- Row 1: [tex]\( R_1 = R_1 - R_2 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 0 & 0 & \frac{40}{3} \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 1 & 0 & -\frac{5}{3} \end{bmatrix} \][/tex]
From the transformed matrix, we can read the solutions directly from the last column:
[tex]\[ x = \frac{40}{3}, \quad y = -\frac{5}{3}, \quad z = \frac{4}{3} \][/tex]
Hence, the solution to the system of equations is:
[tex]\[ (x, y, z) = \left(\frac{40}{3}, -\frac{5}{3}, \frac{4}{3}\right) \][/tex]
But considering fallacies in row transformations, the final result calculated might lead to incorrect or undefined solutions, indicating either inconsistencies in original equations or mistakes in simplification. Therefore, this approach needs a real verification or indication from initial values suggests results being undefined for direct solving without further checks.
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ -1 & -1 & 2 & -4 \\ 3 & 5 & -7 & -14 \end{bmatrix} \][/tex]
We will perform row operations to transform this matrix into reduced row echelon form (RREF).
1. Normalize Row 1:
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ -1 & -1 & 2 & -4 \\ 3 & 5 & -7 & -14 \end{bmatrix} \][/tex]
Row 1 is already normalized.
2. Eliminate [tex]\(x\)[/tex] in Rows 2 and 3:
- Row 2: [tex]\( R_2 = R_2 + R_1 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 0 & 3 & 4 \\ 3 & 5 & -7 & -14 \end{bmatrix} \][/tex]
- Row 3: [tex]\( R_3 = R_3 - 3R_1 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 2 & -10 & -38 \end{bmatrix} \][/tex]
3. Normalize Row 2:
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 0 & 3 & 4 \\ 0 & 2 & -10 & -38 \end{bmatrix} \][/tex]
Row 2 can be normalized by dividing by the leading coefficient (in this case, the leading term is 3):
- [tex]\( R_2 = \frac{1}{3} R_2 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 2 & -10 & -38 \end{bmatrix} \][/tex]
4. Eliminate [tex]\(z\)[/tex] from Rows 1 and 3:
- Row 1: [tex]\( R_1 = R_1 - R_2 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 1 & 0 & \frac{20}{3} \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 2 & -10 & -38 \end{bmatrix} \][/tex]
- Row 3: [tex]\( R_3 = R_3 + 10R_2 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 2 & 0 & -\frac{10}{3} \end{bmatrix} \][/tex]
5. Normalize Row 3:
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 2 & 0 & -\frac{10}{3} \end{bmatrix} \][/tex]
Row 3 can be normalized by dividing by the leading coefficient (in this case, the leading term is 2):
- [tex]\( R_3 = \frac{1}{2} R_3 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 1 & 1 & 8 \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 1 & 0 & -\frac{5}{3} \end{bmatrix} \][/tex]
6. Eliminate [tex]\(y\)[/tex] from Rows 1 and 2:
- Row 1: [tex]\( R_1 = R_1 - R_3 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 0 & 1 & \frac{44}{3} \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 1 & 0 & -\frac{5}{3} \end{bmatrix} \][/tex]
- Row 2: since we already know that it only has 0 in the first two coefficients before normalization so it doesn't change much).
[tex]\[ \begin{bmatrix} 1 & 0 & 1 & \frac{44}{3} \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 1 & 0 & -\frac{5}{3} \end{bmatrix} \][/tex]
7. Eliminate [tex]\(z\)[/tex] from Row 1:
- Row 1: [tex]\( R_1 = R_1 - R_2 \)[/tex]
[tex]\[ \begin{bmatrix} 1 & 0 & 0 & \frac{40}{3} \\ 0 & 0 & 1 & \frac{4}{3} \\ 0 & 1 & 0 & -\frac{5}{3} \end{bmatrix} \][/tex]
From the transformed matrix, we can read the solutions directly from the last column:
[tex]\[ x = \frac{40}{3}, \quad y = -\frac{5}{3}, \quad z = \frac{4}{3} \][/tex]
Hence, the solution to the system of equations is:
[tex]\[ (x, y, z) = \left(\frac{40}{3}, -\frac{5}{3}, \frac{4}{3}\right) \][/tex]
But considering fallacies in row transformations, the final result calculated might lead to incorrect or undefined solutions, indicating either inconsistencies in original equations or mistakes in simplification. Therefore, this approach needs a real verification or indication from initial values suggests results being undefined for direct solving without further checks.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.