Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find [tex]\(\log_{500} 50\)[/tex] using common logarithms and the change-of-base formula, follow these steps:
1. Understand the Change-of-Base Formula: The change-of-base formula for logarithms states that:
[tex]\[ \log_b a = \frac{\log_c a}{\log_c b} \][/tex]
Where [tex]\( b \)[/tex] is the base of the logarithm you want to change, [tex]\( a \)[/tex] is the value you are taking the logarithm of, and [tex]\( c \)[/tex] is the new base (commonly base 10 or base [tex]\( e \)[/tex]).
2. Apply the Change-of-Base Formula:
Choose base [tex]\( c = 10 \)[/tex] (common logarithm). Then,
[tex]\[ \log_{500} 50 = \frac{\log_{10} 50}{\log_{10} 500} \][/tex]
3. Calculate the Common Logarithms:
Determine the values of [tex]\(\log_{10} 50\)[/tex] and [tex]\(\log_{10} 500\)[/tex]:
[tex]\[ \log_{10} 50 = 1.69897 \quad \text{(approximately)} \][/tex]
[tex]\[ \log_{10} 500 = 2.69897 \quad \text{(approximately)} \][/tex]
4. Divide the Logarithms:
Use these values in the change-of-base formula:
[tex]\[ \log_{500} 50 = \frac{\log_{10} 50}{\log_{10} 500} = \frac{1.69897}{2.69897} \][/tex]
5. Perform the Division:
Carry out the division to obtain the result:
[tex]\[ \frac{1.69897}{2.69897} \approx 0.6294882868674145 \][/tex]
6. Round the Result:
Round the result to four decimal places:
[tex]\[ \log_{500} 50 \approx 0.6295 \][/tex]
So, [tex]\(\log_{500} 50\)[/tex] rounded to four decimal places is:
[tex]\[ \log_{500} 50 \approx 0.6295 \][/tex]
1. Understand the Change-of-Base Formula: The change-of-base formula for logarithms states that:
[tex]\[ \log_b a = \frac{\log_c a}{\log_c b} \][/tex]
Where [tex]\( b \)[/tex] is the base of the logarithm you want to change, [tex]\( a \)[/tex] is the value you are taking the logarithm of, and [tex]\( c \)[/tex] is the new base (commonly base 10 or base [tex]\( e \)[/tex]).
2. Apply the Change-of-Base Formula:
Choose base [tex]\( c = 10 \)[/tex] (common logarithm). Then,
[tex]\[ \log_{500} 50 = \frac{\log_{10} 50}{\log_{10} 500} \][/tex]
3. Calculate the Common Logarithms:
Determine the values of [tex]\(\log_{10} 50\)[/tex] and [tex]\(\log_{10} 500\)[/tex]:
[tex]\[ \log_{10} 50 = 1.69897 \quad \text{(approximately)} \][/tex]
[tex]\[ \log_{10} 500 = 2.69897 \quad \text{(approximately)} \][/tex]
4. Divide the Logarithms:
Use these values in the change-of-base formula:
[tex]\[ \log_{500} 50 = \frac{\log_{10} 50}{\log_{10} 500} = \frac{1.69897}{2.69897} \][/tex]
5. Perform the Division:
Carry out the division to obtain the result:
[tex]\[ \frac{1.69897}{2.69897} \approx 0.6294882868674145 \][/tex]
6. Round the Result:
Round the result to four decimal places:
[tex]\[ \log_{500} 50 \approx 0.6295 \][/tex]
So, [tex]\(\log_{500} 50\)[/tex] rounded to four decimal places is:
[tex]\[ \log_{500} 50 \approx 0.6295 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.