At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Ammonia, [tex]\(\text{NH}_3 \left(\Delta H_f = -45.9 \, \text{kJ/mol} \right)\)[/tex], reacts with oxygen to produce water [tex]\(\left(\Delta H_f = -241.8 \, \text{kJ/mol}\right)\)[/tex] and nitric oxide, [tex]\(\text{NO} \left(\Delta H_f = 91.3 \, \text{kJ/mol}\right)\)[/tex], in the following reaction:

[tex]\[
4 \text{NH}_3(g) + 5 \text{O}_2(g) \rightarrow 6 \text{H}_2\text{O}(g) + 4 \text{NO}(g)
\][/tex]

What is the enthalpy change for this reaction?

Use [tex]\(\Delta H_{\text{reaction}} = \sum \left(\Delta H_{\text{f,products}}\right) - \sum \left(\Delta H_{\text{f,reactants}}\right)\)[/tex].

A. [tex]\(-902 \, \text{kJ}\)[/tex]
B. [tex]\(-104.6 \, \text{kJ}\)[/tex]
C. [tex]\(104.6 \, \text{kJ}\)[/tex]
D. [tex]\(900.8 \, \text{kJ}\)[/tex]


Sagot :

To determine the enthalpy change for the reaction, we follow these steps:

### Step 1: Identify the enthalpies of formation for the reactants and products
Given data:
- For [tex]\( \text{NH}_3 \)[/tex], ΔH = -45.9 kJ
- For [tex]\( \text{H}_2\text{O} \)[/tex], ΔH = -241.8 kJ
- For [tex]\( \text{NO} \)[/tex], ΔH = 91.3 kJ

### Step 2: Write down the balanced chemical equation
[tex]\[ 4 \text{NH}_3(g) + 5 \text{O}_2(g) \rightarrow 6 \text{H}_2\text{O}(g) + 4 \text{NO}(g) \][/tex]

### Step 3: Apply the stoichiometric coefficients to the enthalpies of formation
Calculate the sum of the enthalpies of formation for the reactants and products.

#### Reactants
Sum of the enthalpies of formation for the reactants:
[tex]\[ 4 \times \Delta H_{\text{NH}_3} = 4 \times (-45.9 \, \text{kJ}) = -183.6 \, \text{kJ} \][/tex]

#### Products
Sum of the enthalpies of formation for the products:
[tex]\[ 6 \times \Delta H_{\text{H}_2\text{O}} + 4 \times \Delta H_{\text{NO}} = 6 \times (-241.8 \, \text{kJ}) + 4 \times 91.3 \, \text{kJ} \][/tex]

Calculating each term:
[tex]\[ 6 \times (-241.8 \, \text{kJ}) = -1450.8 \, \text{kJ} \][/tex]
[tex]\[ 4 \times 91.3 \, \text{kJ} = 365.2 \, \text{kJ} \][/tex]

Sum of the products:
[tex]\[ -1450.8 \, \text{kJ} + 365.2 \, \text{kJ} = -1085.6 \, \text{kJ} \][/tex]

### Step 4: Calculate the enthalpy change for the reaction
Use the formula:
[tex]\[ \Delta H_{\text{reaction}} = \sum \Delta H_{\text{f,products}} - \sum \Delta H_{\text{f,reactants}} \][/tex]

Substitute the sums:
[tex]\[ \Delta H_{\text{reaction}} = -1085.6 \, \text{kJ} - (-183.6 \, \text{kJ}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -1085.6 \, \text{kJ} + 183.6 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -902.0 \, \text{kJ} \][/tex]

The enthalpy change for the reaction is [tex]\(-902 \, \text{kJ}\)[/tex].

### Final Answer
The enthalpy change for the reaction is [tex]\(-902 \, \text{kJ}\)[/tex]. Therefore, the correct answer is [tex]\(-902 \, \text{kJ}\)[/tex].