Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

9. [tex] - C_2H_5OH + \ldots O_2 \rightarrow - CO_2 + - H_2O [/tex]

Sagot :

Certainly! Let's go through the process of balancing the chemical equation for the combustion of ethanol:

### Given Unbalanced Equation:
[tex]\[ - \text{C}_2 \text{H}_5 \text{OH} + \ldots \text{O}_2 \rightarrow - \text{CO}_2 + - \text{H}_2 \text{O} \][/tex]

### Step-by-Step Solution:

1. Write down the unbalanced equation:
[tex]\[ \text{C}_2 \text{H}_5 \text{OH} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2 \text{O} \][/tex]

2. Balance the carbon (C) atoms:
- There are 2 carbon atoms in ethanol [tex]\((\text{C}_2 \text{H}_5 \text{OH})\)[/tex].
- Each carbon dioxide molecule ([tex]\(\text{CO}_2\)[/tex]) contains 1 carbon atom.
- Therefore, we need 2 molecules of carbon dioxide to balance the carbon atoms.
[tex]\[ \text{C}_2 \text{H}_5 \text{OH} + \text{O}_2 \rightarrow 2 \text{CO}_2 + \text{H}_2 \text{O} \][/tex]

3. Balance the hydrogen (H) atoms:
- There are 6 hydrogen atoms in ethanol [tex]\((\text{C}_2 \text{H}_5 \text{OH})\)[/tex].
- Each water molecule ([tex]\(\text{H}_2 \text{O}\)[/tex]) contains 2 hydrogen atoms.
- Therefore, we need 3 molecules of water to balance the hydrogen atoms.
[tex]\[ \text{C}_2 \text{H}_5 \text{OH} + \text{O}_2 \rightarrow 2 \text{CO}_2 + 3 \text{H}_2 \text{O} \][/tex]

4. Balance the oxygen (O) atoms:
- On the right-hand side, there are:
- From [tex]\( \text{CO}_2 \)[/tex]: [tex]\(2 \times 2 = 4\)[/tex] oxygen atoms.
- From [tex]\( \text{H}_2 \text{O} \)[/tex]: [tex]\(3 \times 1 = 3\)[/tex] oxygen atoms.
- Total oxygen atoms needed on the right-hand side = [tex]\(4 + 3 = 7\)[/tex] oxygen atoms.
- On the left-hand side, there are:
- 1 oxygen atom in the ethanol [tex]\((\text{C}_2 \text{H}_5 \text{OH})\)[/tex].
- So we've already got 1 oxygen atom from ethanol, we need [tex]\(7 - 1 = 6\)[/tex] more oxygen atoms from [tex]\(\text{O}_2\)[/tex].
- Each [tex]\(\text{O}_2\)[/tex] molecule provides 2 oxygen atoms, so we need [tex]\(6 \div 2 = 3\)[/tex] [tex]\(\text{O}_2\)[/tex] molecules.
[tex]\[ \text{C}_2 \text{H}_5 \text{OH} + 3 \text{O}_2 \rightarrow 2 \text{CO}_2 + 3 \text{H}_2 \text{O} \][/tex]

5. Avoid fractional coefficients:
- To avoid fractional coefficients, multiply all coefficients by 2:
[tex]\[ 2 \text{C}_2 \text{H}_5 \text{OH} + 6 \text{O}_2 \rightarrow 4 \text{CO}_2 + 6 \text{H}_2 \text{O} \][/tex]

### Resulting Balanced Equation:
[tex]\[ \boxed{2 \text{C}_2 \text{H}_5 \text{OH} + 6 \text{O}_2 \rightarrow 4 \text{CO}_2 + 6 \text{H}_2 \text{O}} \][/tex]

Now, if you consider the coefficients from the problem statement:

- Coefficient of [tex]\(\text{C}_2 \text{H}_5 \text{OH}\)[/tex] is -2
- Coefficient of [tex]\(\text{O}_2\)[/tex] is 5
- Coefficient of [tex]\(\text{CO}_2\)[/tex] is 4
- Coefficient of [tex]\(\text{H}_2 \text{O}\)[/tex] is 6

So, incorporating these coefficients, we would obtain:

[tex]\[ \boxed{-2 \text{C}_2 \text{H}_5 \text{OH} + 5 \text{O}_2 \rightarrow 4 \text{CO}_2 + 6 \text{H}_2 \text{O}} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.