Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the equilibrium constant expression for the given chemical reaction, we need to identify the appropriate form of the equilibrium expression for [tex]\(K_a\)[/tex].
Given the reaction:
[tex]\[ \text{H}_2\text{CO}_3 (aq) + \text{H}_2\text{O} (l) \rightleftarrows \text{H}_3\text{O}^+ (aq) + \text{HCO}_3^- (aq) \][/tex]
The equilibrium constant expression for an acid dissociation reaction can be written generally as:
[tex]\[ K_a = \frac{[\text{Products}]}{[\text{Reactants}]} \][/tex]
When writing the equilibrium expression, we need to remember that the concentration of pure liquids (like water) is typically not included because it remains essentially constant and can be omitted from the equilibrium expression.
Using this principle, we write the equilibrium expression for the given reaction:
[tex]\[ K_a = \frac{[\text{H}_3\text{O}^+][\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]} \][/tex]
Let's match this expression with the options provided:
A. [tex]\( K_a = \frac{[\text{H}_3\text{O}^+][\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]} \)[/tex]
B. [tex]\( K_a = \frac{[\text{H}_2\text{CO}_3][\text{H}_2\text{O}]}{[\text{H}_3\text{O}^+][\text{HCO}_3^-]} \)[/tex]
C. [tex]\( K_a = \frac{[\text{H}_3\text{O}^+][\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3][\text{H}_2\text{O}]} \)[/tex]
D. [tex]\( K_0 = \frac{[\text{H}_2\text{CO}_3]}{[\text{H}_3\text{O}^+][\text{HCO}_3^-]} \)[/tex]
From these options, the correct equilibrium expression corresponds to option A:
[tex]\[ K_a = \frac{[\text{H}_3\text{O}^+][\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]} \][/tex]
So, the correct answer is:
A. [tex]\(K _{ a }=\frac{\left[ H _3 O ^{+}\right]\left[ HCO _3^{-}\right]}{\left[ H _2 CO _3\right]}\)[/tex].
Given the reaction:
[tex]\[ \text{H}_2\text{CO}_3 (aq) + \text{H}_2\text{O} (l) \rightleftarrows \text{H}_3\text{O}^+ (aq) + \text{HCO}_3^- (aq) \][/tex]
The equilibrium constant expression for an acid dissociation reaction can be written generally as:
[tex]\[ K_a = \frac{[\text{Products}]}{[\text{Reactants}]} \][/tex]
When writing the equilibrium expression, we need to remember that the concentration of pure liquids (like water) is typically not included because it remains essentially constant and can be omitted from the equilibrium expression.
Using this principle, we write the equilibrium expression for the given reaction:
[tex]\[ K_a = \frac{[\text{H}_3\text{O}^+][\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]} \][/tex]
Let's match this expression with the options provided:
A. [tex]\( K_a = \frac{[\text{H}_3\text{O}^+][\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]} \)[/tex]
B. [tex]\( K_a = \frac{[\text{H}_2\text{CO}_3][\text{H}_2\text{O}]}{[\text{H}_3\text{O}^+][\text{HCO}_3^-]} \)[/tex]
C. [tex]\( K_a = \frac{[\text{H}_3\text{O}^+][\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3][\text{H}_2\text{O}]} \)[/tex]
D. [tex]\( K_0 = \frac{[\text{H}_2\text{CO}_3]}{[\text{H}_3\text{O}^+][\text{HCO}_3^-]} \)[/tex]
From these options, the correct equilibrium expression corresponds to option A:
[tex]\[ K_a = \frac{[\text{H}_3\text{O}^+][\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]} \][/tex]
So, the correct answer is:
A. [tex]\(K _{ a }=\frac{\left[ H _3 O ^{+}\right]\left[ HCO _3^{-}\right]}{\left[ H _2 CO _3\right]}\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.