Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To convert the given equation from standard form to graphing form, we will use the method of completing the square.
The given equation is:
[tex]\[ x^2 - 6x + y^2 - 4y + 12 = 0 \][/tex]
### Step-by-Step Solution
1. Group the [tex]\(x\)[/tex] terms and the [tex]\(y\)[/tex] terms together:
[tex]\[ (x^2 - 6x) + (y^2 - 4y) + 12 = 0 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex] terms:
[tex]\[ x^2 - 6x = (x - 3)^2 - 9 \][/tex]
3. Complete the square for the [tex]\(y\)[/tex] terms:
[tex]\[ y^2 - 4y = (y - 2)^2 - 4 \][/tex]
4. Substitute these squares back into the equation:
[tex]\[ (x - 3)^2 - 9 + (y - 2)^2 - 4 + 12 = 0 \][/tex]
5. Simplify the constant terms:
[tex]\[ (x - 3)^2 + (y - 2)^2 - 9 - 4 + 12 = 0 \][/tex]
[tex]\[ (x - 3)^2 + (y - 2)^2 - 1 = 0 \][/tex]
6. Move the constant term to the right side of the equation:
[tex]\[ (x - 3)^2 + (y - 2)^2 = 1 \][/tex]
The converted equation is now in graphing form:
[tex]\[ (x - 3)^2 + (y - 2)^2 = 1 \][/tex]
This matches the option:
c [tex]\((x - 3)^2 + (y - 2)^2 = 1\)[/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\text{c}} \][/tex]
The given equation is:
[tex]\[ x^2 - 6x + y^2 - 4y + 12 = 0 \][/tex]
### Step-by-Step Solution
1. Group the [tex]\(x\)[/tex] terms and the [tex]\(y\)[/tex] terms together:
[tex]\[ (x^2 - 6x) + (y^2 - 4y) + 12 = 0 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex] terms:
[tex]\[ x^2 - 6x = (x - 3)^2 - 9 \][/tex]
3. Complete the square for the [tex]\(y\)[/tex] terms:
[tex]\[ y^2 - 4y = (y - 2)^2 - 4 \][/tex]
4. Substitute these squares back into the equation:
[tex]\[ (x - 3)^2 - 9 + (y - 2)^2 - 4 + 12 = 0 \][/tex]
5. Simplify the constant terms:
[tex]\[ (x - 3)^2 + (y - 2)^2 - 9 - 4 + 12 = 0 \][/tex]
[tex]\[ (x - 3)^2 + (y - 2)^2 - 1 = 0 \][/tex]
6. Move the constant term to the right side of the equation:
[tex]\[ (x - 3)^2 + (y - 2)^2 = 1 \][/tex]
The converted equation is now in graphing form:
[tex]\[ (x - 3)^2 + (y - 2)^2 = 1 \][/tex]
This matches the option:
c [tex]\((x - 3)^2 + (y - 2)^2 = 1\)[/tex]
Thus, the correct answer is:
[tex]\[ \boxed{\text{c}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.