At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve for the values of [tex]\( x \)[/tex] that satisfy the equation [tex]\( f(x) = 18 \)[/tex] given the function [tex]\( f(x) = 3|x-2| + 6 \)[/tex], we should follow these steps:
1. Set up the equation: Start by setting the function equal to 18.
[tex]\[ 3|x-2| + 6 = 18 \][/tex]
2. Isolate the absolute value term: Subtract 6 from both sides to isolate the term with the absolute value.
[tex]\[ 3|x-2| = 18 - 6 \][/tex]
[tex]\[ 3|x-2| = 12 \][/tex]
3. Solve for the absolute value: Divide both sides by 3.
[tex]\[ |x-2| = \frac{12}{3} \][/tex]
[tex]\[ |x-2| = 4 \][/tex]
4. Solve the absolute value equation: Recall that [tex]\( |a| = b \)[/tex] has two solutions [tex]\( a = b \)[/tex] and [tex]\( a = -b \)[/tex]. Apply this to the equation [tex]\( |x-2| = 4 \)[/tex].
[tex]\[ x - 2 = 4 \quad \text{or} \quad x - 2 = -4 \][/tex]
5. Solve each equation for [tex]\( x \)[/tex]:
[tex]\[ x - 2 = 4 \quad \Rightarrow \quad x = 4 + 2 = 6 \][/tex]
[tex]\[ x - 2 = -4 \quad \Rightarrow \quad x = -4 + 2 = -2 \][/tex]
6. Conclusion: The values of [tex]\( x \)[/tex] that satisfy [tex]\( f(x) = 18 \)[/tex] are [tex]\( x = 6 \)[/tex] and [tex]\( x = -2 \)[/tex].
Thus, the correct values of [tex]\( x \)[/tex] are:
[tex]\[\boxed{-2 \text{ and } 6}\][/tex]
So, the answer is:
[tex]\[ x = -2, x = 6 \][/tex]
1. Set up the equation: Start by setting the function equal to 18.
[tex]\[ 3|x-2| + 6 = 18 \][/tex]
2. Isolate the absolute value term: Subtract 6 from both sides to isolate the term with the absolute value.
[tex]\[ 3|x-2| = 18 - 6 \][/tex]
[tex]\[ 3|x-2| = 12 \][/tex]
3. Solve for the absolute value: Divide both sides by 3.
[tex]\[ |x-2| = \frac{12}{3} \][/tex]
[tex]\[ |x-2| = 4 \][/tex]
4. Solve the absolute value equation: Recall that [tex]\( |a| = b \)[/tex] has two solutions [tex]\( a = b \)[/tex] and [tex]\( a = -b \)[/tex]. Apply this to the equation [tex]\( |x-2| = 4 \)[/tex].
[tex]\[ x - 2 = 4 \quad \text{or} \quad x - 2 = -4 \][/tex]
5. Solve each equation for [tex]\( x \)[/tex]:
[tex]\[ x - 2 = 4 \quad \Rightarrow \quad x = 4 + 2 = 6 \][/tex]
[tex]\[ x - 2 = -4 \quad \Rightarrow \quad x = -4 + 2 = -2 \][/tex]
6. Conclusion: The values of [tex]\( x \)[/tex] that satisfy [tex]\( f(x) = 18 \)[/tex] are [tex]\( x = 6 \)[/tex] and [tex]\( x = -2 \)[/tex].
Thus, the correct values of [tex]\( x \)[/tex] are:
[tex]\[\boxed{-2 \text{ and } 6}\][/tex]
So, the answer is:
[tex]\[ x = -2, x = 6 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.