Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
We are given the function [tex]\( f(x) = 2^x \)[/tex] and the transformed function [tex]\( g(x) = f(x + 2) \)[/tex].
To understand the key features of [tex]\( g(x) \)[/tex], let's examine how the transformation affects the original function [tex]\( f(x) \)[/tex].
### 1. Identifying the [tex]\( y \)[/tex]-intercept of [tex]\( g(x) \)[/tex]:
The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex]. For [tex]\( g(x) = f(x + 2) \)[/tex], we substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ g(0) = f(0 + 2) = f(2) = 2^2 = 4 \][/tex]
Thus, the [tex]\( y \)[/tex]-intercept of [tex]\( g(x) \)[/tex] is at [tex]\((0, 4)\)[/tex].
### 2. Identifying the horizontal asymptote of [tex]\( g(x) \)[/tex]:
The horizontal asymptote of an exponential function like [tex]\( f(x) = 2^x \)[/tex] is [tex]\( y = 0 \)[/tex]. The transformation [tex]\( f(x + 2) \)[/tex] is a horizontal shift to the left by 2 units, which does not affect the horizontal asymptote. Therefore, the horizontal asymptote for [tex]\( g(x) \)[/tex] remains:
[tex]\[ y = 0 \][/tex]
### 3. Determining the domain of [tex]\( g(x) \)[/tex]:
The domain of the original function [tex]\( f(x) = 2^x \)[/tex] is all real numbers, [tex]\( \{ x \mid -\infty < x < \infty \} \)[/tex]. A horizontal shift does not change the domain of the function. Therefore, the domain of [tex]\( g(x) = f(x + 2) \)[/tex] also is:
[tex]\[ \{ x \mid -\infty < x < \infty \} \][/tex]
### Summary of key features:
- The [tex]\( y \)[/tex]-intercept of [tex]\( g(x) \)[/tex] is [tex]\((0, 4)\)[/tex].
- The horizontal asymptote of [tex]\( g(x) \)[/tex] is [tex]\( y = 0 \)[/tex].
- The domain of [tex]\( g(x) \)[/tex] is [tex]\( \{ x \mid -\infty < x < \infty \} \)[/tex].
Based on the provided options:
- [tex]\( y \)[/tex]-intercept at [tex]\( (0, 1) \)[/tex]: Incorrect.
- Horizontal asymptote of [tex]\( y = 2 \)[/tex]: Incorrect.
- Domain of [tex]\( \{ x \mid -\infty < x < \infty \} \)[/tex]: Correct.
- [tex]\( y \)[/tex]-intercept at [tex]\( (0, 4) \)[/tex]: Correct.
Thus, the correct statements describing key features of function [tex]\( g(x) \)[/tex] are that it has a [tex]\( y \)[/tex]-intercept at [tex]\((0, 4)\)[/tex] and its domain is [tex]\(\{ x \mid -\infty < x < \infty \}\)[/tex].
To understand the key features of [tex]\( g(x) \)[/tex], let's examine how the transformation affects the original function [tex]\( f(x) \)[/tex].
### 1. Identifying the [tex]\( y \)[/tex]-intercept of [tex]\( g(x) \)[/tex]:
The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex]. For [tex]\( g(x) = f(x + 2) \)[/tex], we substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ g(0) = f(0 + 2) = f(2) = 2^2 = 4 \][/tex]
Thus, the [tex]\( y \)[/tex]-intercept of [tex]\( g(x) \)[/tex] is at [tex]\((0, 4)\)[/tex].
### 2. Identifying the horizontal asymptote of [tex]\( g(x) \)[/tex]:
The horizontal asymptote of an exponential function like [tex]\( f(x) = 2^x \)[/tex] is [tex]\( y = 0 \)[/tex]. The transformation [tex]\( f(x + 2) \)[/tex] is a horizontal shift to the left by 2 units, which does not affect the horizontal asymptote. Therefore, the horizontal asymptote for [tex]\( g(x) \)[/tex] remains:
[tex]\[ y = 0 \][/tex]
### 3. Determining the domain of [tex]\( g(x) \)[/tex]:
The domain of the original function [tex]\( f(x) = 2^x \)[/tex] is all real numbers, [tex]\( \{ x \mid -\infty < x < \infty \} \)[/tex]. A horizontal shift does not change the domain of the function. Therefore, the domain of [tex]\( g(x) = f(x + 2) \)[/tex] also is:
[tex]\[ \{ x \mid -\infty < x < \infty \} \][/tex]
### Summary of key features:
- The [tex]\( y \)[/tex]-intercept of [tex]\( g(x) \)[/tex] is [tex]\((0, 4)\)[/tex].
- The horizontal asymptote of [tex]\( g(x) \)[/tex] is [tex]\( y = 0 \)[/tex].
- The domain of [tex]\( g(x) \)[/tex] is [tex]\( \{ x \mid -\infty < x < \infty \} \)[/tex].
Based on the provided options:
- [tex]\( y \)[/tex]-intercept at [tex]\( (0, 1) \)[/tex]: Incorrect.
- Horizontal asymptote of [tex]\( y = 2 \)[/tex]: Incorrect.
- Domain of [tex]\( \{ x \mid -\infty < x < \infty \} \)[/tex]: Correct.
- [tex]\( y \)[/tex]-intercept at [tex]\( (0, 4) \)[/tex]: Correct.
Thus, the correct statements describing key features of function [tex]\( g(x) \)[/tex] are that it has a [tex]\( y \)[/tex]-intercept at [tex]\((0, 4)\)[/tex] and its domain is [tex]\(\{ x \mid -\infty < x < \infty \}\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.