Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which algebraic expression is a polynomial, we need to recall the definition of a polynomial. A polynomial in one variable [tex]\(x\)[/tex] is an expression that can be written in the form:
[tex]\[ a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \][/tex]
where the coefficients [tex]\(a_n, a_{n-1}, \ldots, a_1, a_0\)[/tex] are real numbers, and [tex]\(n\)[/tex] is a non-negative integer. It must only involve non-negative integer powers of [tex]\(x\)[/tex], and cannot include division by [tex]\(x\)[/tex] or roots.
Let's examine each given expression:
1. [tex]\( 4 x^2 - 3 x + \frac{2}{x} \)[/tex]
- This expression includes the term [tex]\(\frac{2}{x}\)[/tex], which involves division by the variable [tex]\(x\)[/tex]. Hence, it is not a polynomial.
2. [tex]\( -6 x^3 + x^2 - \sqrt{5} \)[/tex]
- This expression involves [tex]\(\sqrt{5}\)[/tex], but note that [tex]\(\sqrt{5}\)[/tex] is just a constant and doesn't affect the form as a polynomial. Thus, this expression is not problematic because it only combines terms with non-negative integer powers of [tex]\(x\)[/tex]. So it is indeed a polynomial.
3. [tex]\( 8 x^2 + \sqrt{x} \)[/tex]
- The term [tex]\(\sqrt{x}\)[/tex] can be rewritten as [tex]\(x^{1/2}\)[/tex], which is not a non-negative integer power of [tex]\(x\)[/tex]. Hence, this expression is not a polynomial.
4. [tex]\( -2 x^4 + \frac{3}{2 x} \)[/tex]
- This expression contains the term [tex]\(\frac{3}{2 x}\)[/tex], which involves division by the variable [tex]\(x\)[/tex]. Thus, it is not a polynomial.
Upon inspecting each of the expressions based on the criteria for a polynomial, we have:
The algebraic expression that is a polynomial is:
\[ -6 x^3 + x^2 - \sqrt{5} \ ]
Thus, the polynomial among the given expressions is the second one.
[tex]\[ a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \][/tex]
where the coefficients [tex]\(a_n, a_{n-1}, \ldots, a_1, a_0\)[/tex] are real numbers, and [tex]\(n\)[/tex] is a non-negative integer. It must only involve non-negative integer powers of [tex]\(x\)[/tex], and cannot include division by [tex]\(x\)[/tex] or roots.
Let's examine each given expression:
1. [tex]\( 4 x^2 - 3 x + \frac{2}{x} \)[/tex]
- This expression includes the term [tex]\(\frac{2}{x}\)[/tex], which involves division by the variable [tex]\(x\)[/tex]. Hence, it is not a polynomial.
2. [tex]\( -6 x^3 + x^2 - \sqrt{5} \)[/tex]
- This expression involves [tex]\(\sqrt{5}\)[/tex], but note that [tex]\(\sqrt{5}\)[/tex] is just a constant and doesn't affect the form as a polynomial. Thus, this expression is not problematic because it only combines terms with non-negative integer powers of [tex]\(x\)[/tex]. So it is indeed a polynomial.
3. [tex]\( 8 x^2 + \sqrt{x} \)[/tex]
- The term [tex]\(\sqrt{x}\)[/tex] can be rewritten as [tex]\(x^{1/2}\)[/tex], which is not a non-negative integer power of [tex]\(x\)[/tex]. Hence, this expression is not a polynomial.
4. [tex]\( -2 x^4 + \frac{3}{2 x} \)[/tex]
- This expression contains the term [tex]\(\frac{3}{2 x}\)[/tex], which involves division by the variable [tex]\(x\)[/tex]. Thus, it is not a polynomial.
Upon inspecting each of the expressions based on the criteria for a polynomial, we have:
The algebraic expression that is a polynomial is:
\[ -6 x^3 + x^2 - \sqrt{5} \ ]
Thus, the polynomial among the given expressions is the second one.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.