Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which algebraic expression is a polynomial, we need to recall the definition of a polynomial. A polynomial in one variable [tex]\(x\)[/tex] is an expression that can be written in the form:
[tex]\[ a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \][/tex]
where the coefficients [tex]\(a_n, a_{n-1}, \ldots, a_1, a_0\)[/tex] are real numbers, and [tex]\(n\)[/tex] is a non-negative integer. It must only involve non-negative integer powers of [tex]\(x\)[/tex], and cannot include division by [tex]\(x\)[/tex] or roots.
Let's examine each given expression:
1. [tex]\( 4 x^2 - 3 x + \frac{2}{x} \)[/tex]
- This expression includes the term [tex]\(\frac{2}{x}\)[/tex], which involves division by the variable [tex]\(x\)[/tex]. Hence, it is not a polynomial.
2. [tex]\( -6 x^3 + x^2 - \sqrt{5} \)[/tex]
- This expression involves [tex]\(\sqrt{5}\)[/tex], but note that [tex]\(\sqrt{5}\)[/tex] is just a constant and doesn't affect the form as a polynomial. Thus, this expression is not problematic because it only combines terms with non-negative integer powers of [tex]\(x\)[/tex]. So it is indeed a polynomial.
3. [tex]\( 8 x^2 + \sqrt{x} \)[/tex]
- The term [tex]\(\sqrt{x}\)[/tex] can be rewritten as [tex]\(x^{1/2}\)[/tex], which is not a non-negative integer power of [tex]\(x\)[/tex]. Hence, this expression is not a polynomial.
4. [tex]\( -2 x^4 + \frac{3}{2 x} \)[/tex]
- This expression contains the term [tex]\(\frac{3}{2 x}\)[/tex], which involves division by the variable [tex]\(x\)[/tex]. Thus, it is not a polynomial.
Upon inspecting each of the expressions based on the criteria for a polynomial, we have:
The algebraic expression that is a polynomial is:
\[ -6 x^3 + x^2 - \sqrt{5} \ ]
Thus, the polynomial among the given expressions is the second one.
[tex]\[ a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \][/tex]
where the coefficients [tex]\(a_n, a_{n-1}, \ldots, a_1, a_0\)[/tex] are real numbers, and [tex]\(n\)[/tex] is a non-negative integer. It must only involve non-negative integer powers of [tex]\(x\)[/tex], and cannot include division by [tex]\(x\)[/tex] or roots.
Let's examine each given expression:
1. [tex]\( 4 x^2 - 3 x + \frac{2}{x} \)[/tex]
- This expression includes the term [tex]\(\frac{2}{x}\)[/tex], which involves division by the variable [tex]\(x\)[/tex]. Hence, it is not a polynomial.
2. [tex]\( -6 x^3 + x^2 - \sqrt{5} \)[/tex]
- This expression involves [tex]\(\sqrt{5}\)[/tex], but note that [tex]\(\sqrt{5}\)[/tex] is just a constant and doesn't affect the form as a polynomial. Thus, this expression is not problematic because it only combines terms with non-negative integer powers of [tex]\(x\)[/tex]. So it is indeed a polynomial.
3. [tex]\( 8 x^2 + \sqrt{x} \)[/tex]
- The term [tex]\(\sqrt{x}\)[/tex] can be rewritten as [tex]\(x^{1/2}\)[/tex], which is not a non-negative integer power of [tex]\(x\)[/tex]. Hence, this expression is not a polynomial.
4. [tex]\( -2 x^4 + \frac{3}{2 x} \)[/tex]
- This expression contains the term [tex]\(\frac{3}{2 x}\)[/tex], which involves division by the variable [tex]\(x\)[/tex]. Thus, it is not a polynomial.
Upon inspecting each of the expressions based on the criteria for a polynomial, we have:
The algebraic expression that is a polynomial is:
\[ -6 x^3 + x^2 - \sqrt{5} \ ]
Thus, the polynomial among the given expressions is the second one.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.