Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which algebraic expression is a polynomial, we need to recall the definition of a polynomial. A polynomial in one variable [tex]\(x\)[/tex] is an expression that can be written in the form:
[tex]\[ a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \][/tex]
where the coefficients [tex]\(a_n, a_{n-1}, \ldots, a_1, a_0\)[/tex] are real numbers, and [tex]\(n\)[/tex] is a non-negative integer. It must only involve non-negative integer powers of [tex]\(x\)[/tex], and cannot include division by [tex]\(x\)[/tex] or roots.
Let's examine each given expression:
1. [tex]\( 4 x^2 - 3 x + \frac{2}{x} \)[/tex]
- This expression includes the term [tex]\(\frac{2}{x}\)[/tex], which involves division by the variable [tex]\(x\)[/tex]. Hence, it is not a polynomial.
2. [tex]\( -6 x^3 + x^2 - \sqrt{5} \)[/tex]
- This expression involves [tex]\(\sqrt{5}\)[/tex], but note that [tex]\(\sqrt{5}\)[/tex] is just a constant and doesn't affect the form as a polynomial. Thus, this expression is not problematic because it only combines terms with non-negative integer powers of [tex]\(x\)[/tex]. So it is indeed a polynomial.
3. [tex]\( 8 x^2 + \sqrt{x} \)[/tex]
- The term [tex]\(\sqrt{x}\)[/tex] can be rewritten as [tex]\(x^{1/2}\)[/tex], which is not a non-negative integer power of [tex]\(x\)[/tex]. Hence, this expression is not a polynomial.
4. [tex]\( -2 x^4 + \frac{3}{2 x} \)[/tex]
- This expression contains the term [tex]\(\frac{3}{2 x}\)[/tex], which involves division by the variable [tex]\(x\)[/tex]. Thus, it is not a polynomial.
Upon inspecting each of the expressions based on the criteria for a polynomial, we have:
The algebraic expression that is a polynomial is:
\[ -6 x^3 + x^2 - \sqrt{5} \ ]
Thus, the polynomial among the given expressions is the second one.
[tex]\[ a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \][/tex]
where the coefficients [tex]\(a_n, a_{n-1}, \ldots, a_1, a_0\)[/tex] are real numbers, and [tex]\(n\)[/tex] is a non-negative integer. It must only involve non-negative integer powers of [tex]\(x\)[/tex], and cannot include division by [tex]\(x\)[/tex] or roots.
Let's examine each given expression:
1. [tex]\( 4 x^2 - 3 x + \frac{2}{x} \)[/tex]
- This expression includes the term [tex]\(\frac{2}{x}\)[/tex], which involves division by the variable [tex]\(x\)[/tex]. Hence, it is not a polynomial.
2. [tex]\( -6 x^3 + x^2 - \sqrt{5} \)[/tex]
- This expression involves [tex]\(\sqrt{5}\)[/tex], but note that [tex]\(\sqrt{5}\)[/tex] is just a constant and doesn't affect the form as a polynomial. Thus, this expression is not problematic because it only combines terms with non-negative integer powers of [tex]\(x\)[/tex]. So it is indeed a polynomial.
3. [tex]\( 8 x^2 + \sqrt{x} \)[/tex]
- The term [tex]\(\sqrt{x}\)[/tex] can be rewritten as [tex]\(x^{1/2}\)[/tex], which is not a non-negative integer power of [tex]\(x\)[/tex]. Hence, this expression is not a polynomial.
4. [tex]\( -2 x^4 + \frac{3}{2 x} \)[/tex]
- This expression contains the term [tex]\(\frac{3}{2 x}\)[/tex], which involves division by the variable [tex]\(x\)[/tex]. Thus, it is not a polynomial.
Upon inspecting each of the expressions based on the criteria for a polynomial, we have:
The algebraic expression that is a polynomial is:
\[ -6 x^3 + x^2 - \sqrt{5} \ ]
Thus, the polynomial among the given expressions is the second one.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.