Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's go through the problem step-by-step.
1. Understanding the Formula:
The formula for the circumference of a circle is given by:
[tex]\[ C = 2 \pi r \][/tex]
where:
- [tex]\( C \)[/tex] is the circumference,
- [tex]\( r \)[/tex] is the radius of the circle,
- [tex]\( \pi \)[/tex] is a mathematical constant approximately equal to 3.14159.
2. Given Information:
The circumference [tex]\( C \)[/tex] of the circle is given as [tex]\( 16 \pi \)[/tex].
3. Solving for the Radius:
We need to solve for the radius [tex]\( r \)[/tex]. Using the formula for the circumference, we can rearrange it to solve for [tex]\( r \)[/tex]:
[tex]\[ C = 2 \pi r \][/tex]
Substituting [tex]\( C = 16 \pi \)[/tex] into the formula gives:
[tex]\[ 16 \pi = 2 \pi r \][/tex]
To isolate [tex]\( r \)[/tex], divide both sides of the equation by [tex]\( 2 \pi \)[/tex]:
[tex]\[ r = \frac{16 \pi}{2 \pi} \][/tex]
4. Simplifying the Expression:
Simplify the right-hand side of the equation:
[tex]\[ r = \frac{16 \pi}{2 \pi} = \frac{16}{2} = 8 \][/tex]
5. Conclusion:
The radius [tex]\( r \)[/tex] of the circle with a circumference of [tex]\( 16 \pi \)[/tex] is:
[tex]\[ r = 8 \][/tex]
Therefore, the radius of the circle is 8.
1. Understanding the Formula:
The formula for the circumference of a circle is given by:
[tex]\[ C = 2 \pi r \][/tex]
where:
- [tex]\( C \)[/tex] is the circumference,
- [tex]\( r \)[/tex] is the radius of the circle,
- [tex]\( \pi \)[/tex] is a mathematical constant approximately equal to 3.14159.
2. Given Information:
The circumference [tex]\( C \)[/tex] of the circle is given as [tex]\( 16 \pi \)[/tex].
3. Solving for the Radius:
We need to solve for the radius [tex]\( r \)[/tex]. Using the formula for the circumference, we can rearrange it to solve for [tex]\( r \)[/tex]:
[tex]\[ C = 2 \pi r \][/tex]
Substituting [tex]\( C = 16 \pi \)[/tex] into the formula gives:
[tex]\[ 16 \pi = 2 \pi r \][/tex]
To isolate [tex]\( r \)[/tex], divide both sides of the equation by [tex]\( 2 \pi \)[/tex]:
[tex]\[ r = \frac{16 \pi}{2 \pi} \][/tex]
4. Simplifying the Expression:
Simplify the right-hand side of the equation:
[tex]\[ r = \frac{16 \pi}{2 \pi} = \frac{16}{2} = 8 \][/tex]
5. Conclusion:
The radius [tex]\( r \)[/tex] of the circle with a circumference of [tex]\( 16 \pi \)[/tex] is:
[tex]\[ r = 8 \][/tex]
Therefore, the radius of the circle is 8.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.