Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's clarify the calculation of the terms in the sequence step by step. The given sequence is described by the term [tex]\((n^3) + 2\)[/tex], where [tex]\(n\)[/tex] is the position in the sequence.
1. Second Term:
- Position [tex]\(n = 2\)[/tex]
- Applying the formula: [tex]\((2^3) + 2 = 8 + 2 = 10\)[/tex]
- So, the second term is [tex]\(10\)[/tex].
2. Fourth Term:
- Position [tex]\(n = 4\)[/tex]
- Applying the formula: [tex]\((4^3) + 2 = 64 + 2 = 66\)[/tex]
- So, the fourth term is [tex]\(66\)[/tex].
3. Sixth Term:
- Position [tex]\(n = 6\)[/tex]
- Applying the formula: [tex]\((6^3) + 2 = 216 + 2 = 218\)[/tex]
- So, the sixth term is [tex]\(218\)[/tex].
4. Eighth Term:
- Position [tex]\(n = 8\)[/tex]
- Applying the formula: [tex]\((8^3) + 2 = 512 + 2 = 514\)[/tex]
- So, the eighth term is [tex]\(514\)[/tex].
5. Tenth Term:
- Position [tex]\(n = 10\)[/tex]
- Applying the formula: [tex]\((10^3) + 2 = 1000 + 2 = 1002\)[/tex]
- So, the tenth term is [tex]\(1002\)[/tex].
[tex]\[ \begin{tabular}{|l|c|c|c|c|c|c|} \hline n \text{ (Position in sequence)} & 2 & 4 & 6 & 8 & 10 & n \\ \hline \text{Value of term} & 10 & 66 & 218 & 514 & 1002 & \text{(nth term)} \\ \hline \end{tabular} \][/tex]
To summarize:
- Second term: [tex]\(10\)[/tex]
- Fourth term: [tex]\(66\)[/tex]
- Sixth term: [tex]\(218\)[/tex]
- Eighth term: [tex]\(514\)[/tex]
- Tenth term: [tex]\(1002\)[/tex]
These values align with our calculations, and you can use the same process to calculate any nth term using the formula [tex]\((n^3) + 2\)[/tex].
1. Second Term:
- Position [tex]\(n = 2\)[/tex]
- Applying the formula: [tex]\((2^3) + 2 = 8 + 2 = 10\)[/tex]
- So, the second term is [tex]\(10\)[/tex].
2. Fourth Term:
- Position [tex]\(n = 4\)[/tex]
- Applying the formula: [tex]\((4^3) + 2 = 64 + 2 = 66\)[/tex]
- So, the fourth term is [tex]\(66\)[/tex].
3. Sixth Term:
- Position [tex]\(n = 6\)[/tex]
- Applying the formula: [tex]\((6^3) + 2 = 216 + 2 = 218\)[/tex]
- So, the sixth term is [tex]\(218\)[/tex].
4. Eighth Term:
- Position [tex]\(n = 8\)[/tex]
- Applying the formula: [tex]\((8^3) + 2 = 512 + 2 = 514\)[/tex]
- So, the eighth term is [tex]\(514\)[/tex].
5. Tenth Term:
- Position [tex]\(n = 10\)[/tex]
- Applying the formula: [tex]\((10^3) + 2 = 1000 + 2 = 1002\)[/tex]
- So, the tenth term is [tex]\(1002\)[/tex].
[tex]\[ \begin{tabular}{|l|c|c|c|c|c|c|} \hline n \text{ (Position in sequence)} & 2 & 4 & 6 & 8 & 10 & n \\ \hline \text{Value of term} & 10 & 66 & 218 & 514 & 1002 & \text{(nth term)} \\ \hline \end{tabular} \][/tex]
To summarize:
- Second term: [tex]\(10\)[/tex]
- Fourth term: [tex]\(66\)[/tex]
- Sixth term: [tex]\(218\)[/tex]
- Eighth term: [tex]\(514\)[/tex]
- Tenth term: [tex]\(1002\)[/tex]
These values align with our calculations, and you can use the same process to calculate any nth term using the formula [tex]\((n^3) + 2\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.