Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the integral [tex]\(\int_0^2 2x e^x \, dx\)[/tex], we will use the method of integration by parts. Integration by parts is based on the formula:
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
where [tex]\(u\)[/tex] and [tex]\(dv\)[/tex] are parts of the integrand you choose strategically.
For our integral [tex]\(\int_0^2 2x e^x \, dx\)[/tex], let's choose:
- [tex]\(u = 2x\)[/tex]
- [tex]\(dv = e^x \, dx\)[/tex]
Next, we need to find [tex]\(du\)[/tex] and [tex]\(v\)[/tex]:
- [tex]\(du = 2 \, dx\)[/tex] (since the derivative of [tex]\(2x\)[/tex] is 2)
- [tex]\(v = e^x\)[/tex] (since the integral of [tex]\(e^x\)[/tex] is [tex]\(e^x\)[/tex])
Now, apply the integration by parts formula:
[tex]\[ \int_0^2 2x e^x \, dx = \left. 2x e^x \right|_0^2 - \int_0^2 2 e^x \, dx \][/tex]
First, evaluate [tex]\(\left. 2x e^x \right|_0^2\)[/tex]:
[tex]\[ \left. 2x e^x \right|_0^2 = (2 \cdot 2 \cdot e^2) - (2 \cdot 0 \cdot e^0) = 4e^2 - 0 = 4e^2 \][/tex]
Next, solve the remaining integral [tex]\(\int_0^2 2 e^x \, dx\)[/tex]:
[tex]\[ \int_0^2 2 e^x \, dx = 2 \int_0^2 e^x \, dx \][/tex]
Since the integral of [tex]\(e^x\)[/tex] is [tex]\(e^x\)[/tex], we get:
[tex]\[ 2 \left. e^x \right|_0^2 = 2 (e^2 - e^0) = 2 (e^2 - 1) = 2e^2 - 2 \][/tex]
Putting it all together from our integration by parts result:
[tex]\[ \int_0^2 2x e^x \, dx = 4e^2 - (2e^2 - 2) = 4e^2 - 2e^2 + 2 = 2e^2 + 2 \][/tex]
Therefore, the result of the definite integral [tex]\(\int_0^2 2x e^x \, dx\)[/tex] is:
[tex]\[ 2 + 2e^2 \][/tex]
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
where [tex]\(u\)[/tex] and [tex]\(dv\)[/tex] are parts of the integrand you choose strategically.
For our integral [tex]\(\int_0^2 2x e^x \, dx\)[/tex], let's choose:
- [tex]\(u = 2x\)[/tex]
- [tex]\(dv = e^x \, dx\)[/tex]
Next, we need to find [tex]\(du\)[/tex] and [tex]\(v\)[/tex]:
- [tex]\(du = 2 \, dx\)[/tex] (since the derivative of [tex]\(2x\)[/tex] is 2)
- [tex]\(v = e^x\)[/tex] (since the integral of [tex]\(e^x\)[/tex] is [tex]\(e^x\)[/tex])
Now, apply the integration by parts formula:
[tex]\[ \int_0^2 2x e^x \, dx = \left. 2x e^x \right|_0^2 - \int_0^2 2 e^x \, dx \][/tex]
First, evaluate [tex]\(\left. 2x e^x \right|_0^2\)[/tex]:
[tex]\[ \left. 2x e^x \right|_0^2 = (2 \cdot 2 \cdot e^2) - (2 \cdot 0 \cdot e^0) = 4e^2 - 0 = 4e^2 \][/tex]
Next, solve the remaining integral [tex]\(\int_0^2 2 e^x \, dx\)[/tex]:
[tex]\[ \int_0^2 2 e^x \, dx = 2 \int_0^2 e^x \, dx \][/tex]
Since the integral of [tex]\(e^x\)[/tex] is [tex]\(e^x\)[/tex], we get:
[tex]\[ 2 \left. e^x \right|_0^2 = 2 (e^2 - e^0) = 2 (e^2 - 1) = 2e^2 - 2 \][/tex]
Putting it all together from our integration by parts result:
[tex]\[ \int_0^2 2x e^x \, dx = 4e^2 - (2e^2 - 2) = 4e^2 - 2e^2 + 2 = 2e^2 + 2 \][/tex]
Therefore, the result of the definite integral [tex]\(\int_0^2 2x e^x \, dx\)[/tex] is:
[tex]\[ 2 + 2e^2 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.