Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the integral [tex]\(\int_0^2 2x e^x \, dx\)[/tex], we will use the method of integration by parts. Integration by parts is based on the formula:
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
where [tex]\(u\)[/tex] and [tex]\(dv\)[/tex] are parts of the integrand you choose strategically.
For our integral [tex]\(\int_0^2 2x e^x \, dx\)[/tex], let's choose:
- [tex]\(u = 2x\)[/tex]
- [tex]\(dv = e^x \, dx\)[/tex]
Next, we need to find [tex]\(du\)[/tex] and [tex]\(v\)[/tex]:
- [tex]\(du = 2 \, dx\)[/tex] (since the derivative of [tex]\(2x\)[/tex] is 2)
- [tex]\(v = e^x\)[/tex] (since the integral of [tex]\(e^x\)[/tex] is [tex]\(e^x\)[/tex])
Now, apply the integration by parts formula:
[tex]\[ \int_0^2 2x e^x \, dx = \left. 2x e^x \right|_0^2 - \int_0^2 2 e^x \, dx \][/tex]
First, evaluate [tex]\(\left. 2x e^x \right|_0^2\)[/tex]:
[tex]\[ \left. 2x e^x \right|_0^2 = (2 \cdot 2 \cdot e^2) - (2 \cdot 0 \cdot e^0) = 4e^2 - 0 = 4e^2 \][/tex]
Next, solve the remaining integral [tex]\(\int_0^2 2 e^x \, dx\)[/tex]:
[tex]\[ \int_0^2 2 e^x \, dx = 2 \int_0^2 e^x \, dx \][/tex]
Since the integral of [tex]\(e^x\)[/tex] is [tex]\(e^x\)[/tex], we get:
[tex]\[ 2 \left. e^x \right|_0^2 = 2 (e^2 - e^0) = 2 (e^2 - 1) = 2e^2 - 2 \][/tex]
Putting it all together from our integration by parts result:
[tex]\[ \int_0^2 2x e^x \, dx = 4e^2 - (2e^2 - 2) = 4e^2 - 2e^2 + 2 = 2e^2 + 2 \][/tex]
Therefore, the result of the definite integral [tex]\(\int_0^2 2x e^x \, dx\)[/tex] is:
[tex]\[ 2 + 2e^2 \][/tex]
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
where [tex]\(u\)[/tex] and [tex]\(dv\)[/tex] are parts of the integrand you choose strategically.
For our integral [tex]\(\int_0^2 2x e^x \, dx\)[/tex], let's choose:
- [tex]\(u = 2x\)[/tex]
- [tex]\(dv = e^x \, dx\)[/tex]
Next, we need to find [tex]\(du\)[/tex] and [tex]\(v\)[/tex]:
- [tex]\(du = 2 \, dx\)[/tex] (since the derivative of [tex]\(2x\)[/tex] is 2)
- [tex]\(v = e^x\)[/tex] (since the integral of [tex]\(e^x\)[/tex] is [tex]\(e^x\)[/tex])
Now, apply the integration by parts formula:
[tex]\[ \int_0^2 2x e^x \, dx = \left. 2x e^x \right|_0^2 - \int_0^2 2 e^x \, dx \][/tex]
First, evaluate [tex]\(\left. 2x e^x \right|_0^2\)[/tex]:
[tex]\[ \left. 2x e^x \right|_0^2 = (2 \cdot 2 \cdot e^2) - (2 \cdot 0 \cdot e^0) = 4e^2 - 0 = 4e^2 \][/tex]
Next, solve the remaining integral [tex]\(\int_0^2 2 e^x \, dx\)[/tex]:
[tex]\[ \int_0^2 2 e^x \, dx = 2 \int_0^2 e^x \, dx \][/tex]
Since the integral of [tex]\(e^x\)[/tex] is [tex]\(e^x\)[/tex], we get:
[tex]\[ 2 \left. e^x \right|_0^2 = 2 (e^2 - e^0) = 2 (e^2 - 1) = 2e^2 - 2 \][/tex]
Putting it all together from our integration by parts result:
[tex]\[ \int_0^2 2x e^x \, dx = 4e^2 - (2e^2 - 2) = 4e^2 - 2e^2 + 2 = 2e^2 + 2 \][/tex]
Therefore, the result of the definite integral [tex]\(\int_0^2 2x e^x \, dx\)[/tex] is:
[tex]\[ 2 + 2e^2 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.