Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Evaluate the integral:
[tex]\[ \int_0^2 2x e^x \, dx \][/tex]


Sagot :

To solve the integral [tex]\(\int_0^2 2x e^x \, dx\)[/tex], we will use the method of integration by parts. Integration by parts is based on the formula:
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
where [tex]\(u\)[/tex] and [tex]\(dv\)[/tex] are parts of the integrand you choose strategically.

For our integral [tex]\(\int_0^2 2x e^x \, dx\)[/tex], let's choose:
- [tex]\(u = 2x\)[/tex]
- [tex]\(dv = e^x \, dx\)[/tex]

Next, we need to find [tex]\(du\)[/tex] and [tex]\(v\)[/tex]:
- [tex]\(du = 2 \, dx\)[/tex] (since the derivative of [tex]\(2x\)[/tex] is 2)
- [tex]\(v = e^x\)[/tex] (since the integral of [tex]\(e^x\)[/tex] is [tex]\(e^x\)[/tex])

Now, apply the integration by parts formula:
[tex]\[ \int_0^2 2x e^x \, dx = \left. 2x e^x \right|_0^2 - \int_0^2 2 e^x \, dx \][/tex]

First, evaluate [tex]\(\left. 2x e^x \right|_0^2\)[/tex]:
[tex]\[ \left. 2x e^x \right|_0^2 = (2 \cdot 2 \cdot e^2) - (2 \cdot 0 \cdot e^0) = 4e^2 - 0 = 4e^2 \][/tex]

Next, solve the remaining integral [tex]\(\int_0^2 2 e^x \, dx\)[/tex]:
[tex]\[ \int_0^2 2 e^x \, dx = 2 \int_0^2 e^x \, dx \][/tex]
Since the integral of [tex]\(e^x\)[/tex] is [tex]\(e^x\)[/tex], we get:
[tex]\[ 2 \left. e^x \right|_0^2 = 2 (e^2 - e^0) = 2 (e^2 - 1) = 2e^2 - 2 \][/tex]

Putting it all together from our integration by parts result:
[tex]\[ \int_0^2 2x e^x \, dx = 4e^2 - (2e^2 - 2) = 4e^2 - 2e^2 + 2 = 2e^2 + 2 \][/tex]

Therefore, the result of the definite integral [tex]\(\int_0^2 2x e^x \, dx\)[/tex] is:
[tex]\[ 2 + 2e^2 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.