Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the missing exponent of [tex]\( y \)[/tex] in the second term of the polynomial [tex]\( 6xy^2 - 5x^2y^m + 9x^2 \)[/tex] so that it becomes a trinomial with a degree of 3 after it has been fully simplified, let's proceed with a step-by-step analysis.
1. Identifying the degrees of each term:
- The first term is [tex]\( 6xy^2 \)[/tex]:
- Degree of [tex]\( x \)[/tex] is 1.
- Degree of [tex]\( y \)[/tex] is 2.
- Total degree of this term = [tex]\( 1 + 2 = 3 \)[/tex].
- The third term is [tex]\( 9x^2 \)[/tex]:
- Degree of [tex]\( x \)[/tex] is 2.
- Since there is no [tex]\( y \)[/tex], its degree is 0.
- Total degree of this term = [tex]\( 2 + 0 = 2 \)[/tex].
2. Ensuring the polynomial is a trinomial with a degree of 3:
- Since we need the polynomial to have a degree of 3, the second term must also have a total degree of 3 when simplified.
- The second term is [tex]\( -5x^2y^m \)[/tex]:
- Degree of [tex]\( x \)[/tex] is already 2.
- We need the combined degree to be 3, so we set the equation:
[tex]\[ 2 + m = 3 \][/tex]
3. Solving for the missing exponent [tex]\( m \)[/tex]:
- Isolate [tex]\( m \)[/tex]:
[tex]\[ m = 3 - 2 \][/tex]
[tex]\[ m = 1 \][/tex]
Thus, the missing exponent of [tex]\( y \)[/tex] in the second term [tex]\( -5x^2y^m \)[/tex] must be [tex]\( \boxed{1} \)[/tex].
1. Identifying the degrees of each term:
- The first term is [tex]\( 6xy^2 \)[/tex]:
- Degree of [tex]\( x \)[/tex] is 1.
- Degree of [tex]\( y \)[/tex] is 2.
- Total degree of this term = [tex]\( 1 + 2 = 3 \)[/tex].
- The third term is [tex]\( 9x^2 \)[/tex]:
- Degree of [tex]\( x \)[/tex] is 2.
- Since there is no [tex]\( y \)[/tex], its degree is 0.
- Total degree of this term = [tex]\( 2 + 0 = 2 \)[/tex].
2. Ensuring the polynomial is a trinomial with a degree of 3:
- Since we need the polynomial to have a degree of 3, the second term must also have a total degree of 3 when simplified.
- The second term is [tex]\( -5x^2y^m \)[/tex]:
- Degree of [tex]\( x \)[/tex] is already 2.
- We need the combined degree to be 3, so we set the equation:
[tex]\[ 2 + m = 3 \][/tex]
3. Solving for the missing exponent [tex]\( m \)[/tex]:
- Isolate [tex]\( m \)[/tex]:
[tex]\[ m = 3 - 2 \][/tex]
[tex]\[ m = 1 \][/tex]
Thus, the missing exponent of [tex]\( y \)[/tex] in the second term [tex]\( -5x^2y^m \)[/tex] must be [tex]\( \boxed{1} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.