Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which terms could be the missing first term of an expression that, when fully simplified, would be a binomial with a degree of 4, we need to understand the degree of each term provided. A binomial has two distinct terms, and the degree of the binomial is determined by the highest degree among its terms.
Let's analyze the degree of each provided term separately:
1. [tex]\(-5xy^3 + 9x^2y\)[/tex]
- The term [tex]\(-5xy^3\)[/tex] has a degree of [tex]\(1+3 = 4\)[/tex] (since the exponent of [tex]\(x\)[/tex] is 1, and the exponent of [tex]\(y\)[/tex] is 3).
- The term [tex]\(9x^2y\)[/tex] has a degree of [tex]\(2+1 = 3\)[/tex] (since the exponent of [tex]\(x\)[/tex] is 2, and the exponent of [tex]\(y\)[/tex] is 1).
2. [tex]\(0\)[/tex]
- This term is [tex]\(0\)[/tex] and does not contribute to the degree of a polynomial.
3. [tex]\(5xy^3\)[/tex]
- This term has a degree of [tex]\(1+3 = 4\)[/tex] (since the exponent of [tex]\(x\)[/tex] is 1, and the exponent of [tex]\(y\)[/tex] is 3).
4. [tex]\(9x^2y\)[/tex]
- This term has a degree of [tex]\(2+1 = 3\)[/tex] (since the exponent of [tex]\(x\)[/tex] is 2, and the exponent of [tex]\(y\)[/tex] is 1).
5. [tex]\(8.4\)[/tex]
- This is a constant term and has a degree of 0.
6. [tex]\(4xy^3\)[/tex]
- This term has a degree of [tex]\(1+3 = 4\)[/tex] (since the exponent of [tex]\(x\)[/tex] is 1, and the exponent of [tex]\(y\)[/tex] is 3).
After identifying the degrees of each term, we need to form a binomial with the highest degree of 4. Looking at the terms, [tex]\(-5xy^3\)[/tex], [tex]\(5xy^3\)[/tex], and [tex]\(4xy^3\)[/tex] all have a degree of 4.
Given that we need to choose three options that could serve as the missing first term in an expression that, when fully simplified, is a binomial with a degree of 4, we can choose any of these three terms as they already have a degree of 4 and can contribute to forming a binomial of degree 4 when paired with appropriate terms.
Therefore, the three options are:
- [tex]\( -5xy^3 + 9x^2y \)[/tex]
- [tex]\( 5xy^3 \)[/tex]
- [tex]\( 4xy^3 \)[/tex]
Let's analyze the degree of each provided term separately:
1. [tex]\(-5xy^3 + 9x^2y\)[/tex]
- The term [tex]\(-5xy^3\)[/tex] has a degree of [tex]\(1+3 = 4\)[/tex] (since the exponent of [tex]\(x\)[/tex] is 1, and the exponent of [tex]\(y\)[/tex] is 3).
- The term [tex]\(9x^2y\)[/tex] has a degree of [tex]\(2+1 = 3\)[/tex] (since the exponent of [tex]\(x\)[/tex] is 2, and the exponent of [tex]\(y\)[/tex] is 1).
2. [tex]\(0\)[/tex]
- This term is [tex]\(0\)[/tex] and does not contribute to the degree of a polynomial.
3. [tex]\(5xy^3\)[/tex]
- This term has a degree of [tex]\(1+3 = 4\)[/tex] (since the exponent of [tex]\(x\)[/tex] is 1, and the exponent of [tex]\(y\)[/tex] is 3).
4. [tex]\(9x^2y\)[/tex]
- This term has a degree of [tex]\(2+1 = 3\)[/tex] (since the exponent of [tex]\(x\)[/tex] is 2, and the exponent of [tex]\(y\)[/tex] is 1).
5. [tex]\(8.4\)[/tex]
- This is a constant term and has a degree of 0.
6. [tex]\(4xy^3\)[/tex]
- This term has a degree of [tex]\(1+3 = 4\)[/tex] (since the exponent of [tex]\(x\)[/tex] is 1, and the exponent of [tex]\(y\)[/tex] is 3).
After identifying the degrees of each term, we need to form a binomial with the highest degree of 4. Looking at the terms, [tex]\(-5xy^3\)[/tex], [tex]\(5xy^3\)[/tex], and [tex]\(4xy^3\)[/tex] all have a degree of 4.
Given that we need to choose three options that could serve as the missing first term in an expression that, when fully simplified, is a binomial with a degree of 4, we can choose any of these three terms as they already have a degree of 4 and can contribute to forming a binomial of degree 4 when paired with appropriate terms.
Therefore, the three options are:
- [tex]\( -5xy^3 + 9x^2y \)[/tex]
- [tex]\( 5xy^3 \)[/tex]
- [tex]\( 4xy^3 \)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.