Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's fill in the missing numbers and symbols for the given nuclear processes step by step:
### Part A
The original nuclear equation is:
[tex]\[ \ce{_{16}^{31} Si \longrightarrow{ }_{14}^{28} Si +{ }_0^1 n } \][/tex]
To balance the equation, we need to find the missing isotope that decays into [tex]\(\ce{_{14}^{28} Si}\)[/tex] and [tex]\(\ce{_0^1 n}\)[/tex].
The isotope [tex]\(\ce{_{16}^{31} Si}\)[/tex] has:
- Mass number = [tex]\(31\)[/tex]
- Atomic number = [tex]\(16\)[/tex]
The given product [tex]\(\ce{_{14}^{28} Si}\)[/tex] has:
- Mass number = [tex]\(28\)[/tex]
- Atomic number = [tex]\(14\)[/tex]
A neutron [tex]\(\ce{_0^1 n}\)[/tex] has:
- Mass number = [tex]\(1\)[/tex]
- Atomic number = [tex]\(0\)[/tex]
We apply the conservation of mass number and atomic number:
- Mass number: [tex]\(31 = 28 + 1\)[/tex]
- Atomic number: [tex]\(16 = 14 + 0\)[/tex]
So the original equation is balanced correctly.
### Part B
The original nuclear equation is:
[tex]\[ \ce{_{19}^{40} K \longrightarrow{ }_{18}^{40} Ar +{ }_1^1 H } \][/tex]
For potassium [tex]\(\ce{_{19}^{40} K}\)[/tex]:
- Mass number = [tex]\(40\)[/tex]
- Atomic number = [tex]\(19\)[/tex]
For argon [tex]\(\ce{_{18}^{40} Ar}\)[/tex]:
- Mass number = [tex]\(40\)[/tex]
- Atomic number = [tex]\(18\)[/tex]
For the proton [tex]\(\ce{_1^1 H}\)[/tex]:
- Mass number = [tex]\(1\)[/tex]
- Atomic number = [tex]\(1\)[/tex]
We check for the conservation of mass number and atomic number:
- Mass number: [tex]\(40 = 40 + 1\)[/tex]
- Atomic number: [tex]\(19 = 18 + 1\)[/tex]
So the original equation is balanced correctly.
### Part C
The original nuclear equation is:
[tex]\[ \ce{_{24}^{52} Cr \longrightarrow{ }_{22}^{48} Ti +[]^{[]}[] } \][/tex]
For chromium [tex]\(\ce{_{24}^{52} Cr}\)[/tex]:
- Mass number = [tex]\(52\)[/tex]
- Atomic number = [tex]\(24\)[/tex]
For titanium [tex]\(\ce{_{22}^{48} Ti}\)[/tex]:
- Mass number = [tex]\(48\)[/tex]
- Atomic number = [tex]\(22\)[/tex]
We need to find the missing particle that completes the equation. Let's denote it by [tex]\(\ce{_z^A X}\)[/tex]:
Applying the conservation laws:
- Mass number: [tex]\(52 = 48 + A\)[/tex]
- Atomic number: [tex]\(24 = 22 + z\)[/tex]
Solving for [tex]\(A\)[/tex] (mass number) and [tex]\(z\)[/tex] (atomic number):
- [tex]\(A = 52 - 48 = 4\)[/tex]
- [tex]\(z = 24 - 22 = 2\)[/tex]
This missing particle is [tex]\(\ce{_2^4 He}\)[/tex] (an alpha particle).
So the completed equation is:
[tex]\[ \ce{_{24}^{52} Cr \longrightarrow { }_{22}^{48} Ti +_{2}^{4} He } \][/tex]
### Part D
The original nuclear equation is:
[tex]\[ \ce{_{24}^{55} Cr \longrightarrow{ }_{25}^{55} Mn +{ }_{-1}^0 \beta } \][/tex]
For chromium [tex]\(\ce{_{24}^{55} Cr}\)[/tex]:
- Mass number = [tex]\(55\)[/tex]
- Atomic number = [tex]\(24\)[/tex]
For manganese [tex]\(\ce{_{25}^{55} Mn}\)[/tex]:
- Mass number = [tex]\(55\)[/tex]
- Atomic number = [tex]\(25\)[/tex]
For the beta particle [tex]\(\ce{_{-1}^0 \beta}\)[/tex]:
- Mass number = [tex]\(0\)[/tex]
- Atomic number = [tex]\(-1\)[/tex]
We check for the conservation of mass number and atomic number:
- Mass number: [tex]\(55 = 55 + 0\)[/tex]
- Atomic number: [tex]\(24 = 25 - 1\)[/tex]
So the original equation is balanced correctly.
Combining all the parts, we have:
- Part A: [tex]\[ \ce{_{16}^{31} Si \longrightarrow{ }_{14}^{28} Si +{ }_0^1 n } \][/tex]
- Part B: [tex]\[ \ce{_{19}^{40} K \longrightarrow{ }_{18}^{40} Ar +{ }_1^1 H } \][/tex]
- Part C: [tex]\[ \ce{_{24}^{52} Cr \longrightarrow{ }_{22}^{48} Ti +_{2}^{4} He } \][/tex]
- Part D: [tex]\[ \ce{_{24}^{55} Cr \longrightarrow{ }_{25}^{55} Mn +{ }_{-1}^0 \beta } \][/tex]
### Part A
The original nuclear equation is:
[tex]\[ \ce{_{16}^{31} Si \longrightarrow{ }_{14}^{28} Si +{ }_0^1 n } \][/tex]
To balance the equation, we need to find the missing isotope that decays into [tex]\(\ce{_{14}^{28} Si}\)[/tex] and [tex]\(\ce{_0^1 n}\)[/tex].
The isotope [tex]\(\ce{_{16}^{31} Si}\)[/tex] has:
- Mass number = [tex]\(31\)[/tex]
- Atomic number = [tex]\(16\)[/tex]
The given product [tex]\(\ce{_{14}^{28} Si}\)[/tex] has:
- Mass number = [tex]\(28\)[/tex]
- Atomic number = [tex]\(14\)[/tex]
A neutron [tex]\(\ce{_0^1 n}\)[/tex] has:
- Mass number = [tex]\(1\)[/tex]
- Atomic number = [tex]\(0\)[/tex]
We apply the conservation of mass number and atomic number:
- Mass number: [tex]\(31 = 28 + 1\)[/tex]
- Atomic number: [tex]\(16 = 14 + 0\)[/tex]
So the original equation is balanced correctly.
### Part B
The original nuclear equation is:
[tex]\[ \ce{_{19}^{40} K \longrightarrow{ }_{18}^{40} Ar +{ }_1^1 H } \][/tex]
For potassium [tex]\(\ce{_{19}^{40} K}\)[/tex]:
- Mass number = [tex]\(40\)[/tex]
- Atomic number = [tex]\(19\)[/tex]
For argon [tex]\(\ce{_{18}^{40} Ar}\)[/tex]:
- Mass number = [tex]\(40\)[/tex]
- Atomic number = [tex]\(18\)[/tex]
For the proton [tex]\(\ce{_1^1 H}\)[/tex]:
- Mass number = [tex]\(1\)[/tex]
- Atomic number = [tex]\(1\)[/tex]
We check for the conservation of mass number and atomic number:
- Mass number: [tex]\(40 = 40 + 1\)[/tex]
- Atomic number: [tex]\(19 = 18 + 1\)[/tex]
So the original equation is balanced correctly.
### Part C
The original nuclear equation is:
[tex]\[ \ce{_{24}^{52} Cr \longrightarrow{ }_{22}^{48} Ti +[]^{[]}[] } \][/tex]
For chromium [tex]\(\ce{_{24}^{52} Cr}\)[/tex]:
- Mass number = [tex]\(52\)[/tex]
- Atomic number = [tex]\(24\)[/tex]
For titanium [tex]\(\ce{_{22}^{48} Ti}\)[/tex]:
- Mass number = [tex]\(48\)[/tex]
- Atomic number = [tex]\(22\)[/tex]
We need to find the missing particle that completes the equation. Let's denote it by [tex]\(\ce{_z^A X}\)[/tex]:
Applying the conservation laws:
- Mass number: [tex]\(52 = 48 + A\)[/tex]
- Atomic number: [tex]\(24 = 22 + z\)[/tex]
Solving for [tex]\(A\)[/tex] (mass number) and [tex]\(z\)[/tex] (atomic number):
- [tex]\(A = 52 - 48 = 4\)[/tex]
- [tex]\(z = 24 - 22 = 2\)[/tex]
This missing particle is [tex]\(\ce{_2^4 He}\)[/tex] (an alpha particle).
So the completed equation is:
[tex]\[ \ce{_{24}^{52} Cr \longrightarrow { }_{22}^{48} Ti +_{2}^{4} He } \][/tex]
### Part D
The original nuclear equation is:
[tex]\[ \ce{_{24}^{55} Cr \longrightarrow{ }_{25}^{55} Mn +{ }_{-1}^0 \beta } \][/tex]
For chromium [tex]\(\ce{_{24}^{55} Cr}\)[/tex]:
- Mass number = [tex]\(55\)[/tex]
- Atomic number = [tex]\(24\)[/tex]
For manganese [tex]\(\ce{_{25}^{55} Mn}\)[/tex]:
- Mass number = [tex]\(55\)[/tex]
- Atomic number = [tex]\(25\)[/tex]
For the beta particle [tex]\(\ce{_{-1}^0 \beta}\)[/tex]:
- Mass number = [tex]\(0\)[/tex]
- Atomic number = [tex]\(-1\)[/tex]
We check for the conservation of mass number and atomic number:
- Mass number: [tex]\(55 = 55 + 0\)[/tex]
- Atomic number: [tex]\(24 = 25 - 1\)[/tex]
So the original equation is balanced correctly.
Combining all the parts, we have:
- Part A: [tex]\[ \ce{_{16}^{31} Si \longrightarrow{ }_{14}^{28} Si +{ }_0^1 n } \][/tex]
- Part B: [tex]\[ \ce{_{19}^{40} K \longrightarrow{ }_{18}^{40} Ar +{ }_1^1 H } \][/tex]
- Part C: [tex]\[ \ce{_{24}^{52} Cr \longrightarrow{ }_{22}^{48} Ti +_{2}^{4} He } \][/tex]
- Part D: [tex]\[ \ce{_{24}^{55} Cr \longrightarrow{ }_{25}^{55} Mn +{ }_{-1}^0 \beta } \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.