Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find which scenario generates the most elastic potential energy, we will calculate the elastic potential energy for each scenario using the formula:
[tex]\[ U = \frac{1}{2} k x^2 \][/tex]
where:
- [tex]\( U \)[/tex] is the elastic potential energy,
- [tex]\( k \)[/tex] is the spring constant, and
- [tex]\( x \)[/tex] is the compression distance.
### Scenario A
For a spring with a spring constant [tex]\( k_a = 3 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_a = 1.0 \)[/tex] m:
[tex]\[ U_a = \frac{1}{2} k_a x_a^2 \][/tex]
[tex]\[ U_a = \frac{1}{2} \times 3 \times (1.0)^2 \][/tex]
[tex]\[ U_a = \frac{3}{2} \times 1 \][/tex]
[tex]\[ U_a = 1.5 \text{ Joules} \][/tex]
### Scenario B
For a spring with a spring constant [tex]\( k_b = 6 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_b = 0.8 \)[/tex] m:
[tex]\[ U_b = \frac{1}{2} k_b x_b^2 \][/tex]
[tex]\[ U_b = \frac{1}{2} \times 6 \times (0.8)^2 \][/tex]
[tex]\[ U_b = 3 \times 0.64 \][/tex]
[tex]\[ U_b = 1.92 \text{ Joules} \][/tex]
### Scenario C
For a spring with a spring constant [tex]\( k_c = 9 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_c = 0.6 \)[/tex] m:
[tex]\[ U_c = \frac{1}{2} k_c x_c^2 \][/tex]
[tex]\[ U_c = \frac{1}{2} \times 9 \times (0.6)^2 \][/tex]
[tex]\[ U_c = 4.5 \times 0.36 \][/tex]
[tex]\[ U_c = 1.62 \text{ Joules} \][/tex]
### Scenario D
For a spring with a spring constant [tex]\( k_d = 12 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_d = 0.4 \)[/tex] m:
[tex]\[ U_d = \frac{1}{2} k_d x_d^2 \][/tex]
[tex]\[ U_d = \frac{1}{2} \times 12 \times (0.4)^2 \][/tex]
[tex]\[ U_d = 6 \times 0.16 \][/tex]
[tex]\[ U_d = 0.96 \text{ Joules} \][/tex]
### Compare the Energies
Now that we have the elastic potential energies for each scenario:
- [tex]\( U_a = 1.5 \)[/tex] Joules
- [tex]\( U_b = 1.92 \)[/tex] Joules
- [tex]\( U_c = 1.62 \)[/tex] Joules
- [tex]\( U_d = 0.96 \)[/tex] Joules
The scenario with the most elastic potential energy is Scenario B with [tex]\( 1.92 \)[/tex] Joules.
Thus, Scenario B generates the most elastic potential energy.
[tex]\[ U = \frac{1}{2} k x^2 \][/tex]
where:
- [tex]\( U \)[/tex] is the elastic potential energy,
- [tex]\( k \)[/tex] is the spring constant, and
- [tex]\( x \)[/tex] is the compression distance.
### Scenario A
For a spring with a spring constant [tex]\( k_a = 3 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_a = 1.0 \)[/tex] m:
[tex]\[ U_a = \frac{1}{2} k_a x_a^2 \][/tex]
[tex]\[ U_a = \frac{1}{2} \times 3 \times (1.0)^2 \][/tex]
[tex]\[ U_a = \frac{3}{2} \times 1 \][/tex]
[tex]\[ U_a = 1.5 \text{ Joules} \][/tex]
### Scenario B
For a spring with a spring constant [tex]\( k_b = 6 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_b = 0.8 \)[/tex] m:
[tex]\[ U_b = \frac{1}{2} k_b x_b^2 \][/tex]
[tex]\[ U_b = \frac{1}{2} \times 6 \times (0.8)^2 \][/tex]
[tex]\[ U_b = 3 \times 0.64 \][/tex]
[tex]\[ U_b = 1.92 \text{ Joules} \][/tex]
### Scenario C
For a spring with a spring constant [tex]\( k_c = 9 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_c = 0.6 \)[/tex] m:
[tex]\[ U_c = \frac{1}{2} k_c x_c^2 \][/tex]
[tex]\[ U_c = \frac{1}{2} \times 9 \times (0.6)^2 \][/tex]
[tex]\[ U_c = 4.5 \times 0.36 \][/tex]
[tex]\[ U_c = 1.62 \text{ Joules} \][/tex]
### Scenario D
For a spring with a spring constant [tex]\( k_d = 12 \frac{N}{m} \)[/tex] compressed a distance [tex]\( x_d = 0.4 \)[/tex] m:
[tex]\[ U_d = \frac{1}{2} k_d x_d^2 \][/tex]
[tex]\[ U_d = \frac{1}{2} \times 12 \times (0.4)^2 \][/tex]
[tex]\[ U_d = 6 \times 0.16 \][/tex]
[tex]\[ U_d = 0.96 \text{ Joules} \][/tex]
### Compare the Energies
Now that we have the elastic potential energies for each scenario:
- [tex]\( U_a = 1.5 \)[/tex] Joules
- [tex]\( U_b = 1.92 \)[/tex] Joules
- [tex]\( U_c = 1.62 \)[/tex] Joules
- [tex]\( U_d = 0.96 \)[/tex] Joules
The scenario with the most elastic potential energy is Scenario B with [tex]\( 1.92 \)[/tex] Joules.
Thus, Scenario B generates the most elastic potential energy.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.