Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the factor by which the radius of sphere A is multiplied to produce the radius of sphere B, follow these steps:
1. Identify the radius of sphere A:
- The radius of sphere A is given as 24 centimeters.
2. Determine the radius of sphere B:
- The diameter of sphere B is given as 42 centimeters.
- Since the radius is half the diameter, calculate the radius of sphere B:
[tex]\[ \text{Radius of sphere B} = \frac{\text{Diameter of sphere B}}{2} = \frac{42 \text{ cm}}{2} = 21 \text{ cm} \][/tex]
3. Calculate the multiplication factor:
- We need to determine by what factor the radius of sphere A (24 cm) is multiplied to obtain the radius of sphere B (21 cm).
- This factor is found by dividing the radius of sphere B by the radius of sphere A:
[tex]\[ \text{Factor} = \frac{\text{Radius of sphere B}}{\text{Radius of sphere A}} = \frac{21 \text{ cm}}{24 \text{ cm}} \][/tex]
4. Simplify the fraction:
- Simplify the fraction [tex]\(\frac{21}{24}\)[/tex]:
[tex]\[ \frac{21}{24} = \frac{21 \div 3}{24 \div 3} = \frac{7}{8} \][/tex]
Therefore, the radius of sphere A is multiplied by [tex]\(\frac{7}{8}\)[/tex] to produce the radius of sphere B.
The correct answer is [tex]\(\boxed{\frac{7}{8}}\)[/tex].
1. Identify the radius of sphere A:
- The radius of sphere A is given as 24 centimeters.
2. Determine the radius of sphere B:
- The diameter of sphere B is given as 42 centimeters.
- Since the radius is half the diameter, calculate the radius of sphere B:
[tex]\[ \text{Radius of sphere B} = \frac{\text{Diameter of sphere B}}{2} = \frac{42 \text{ cm}}{2} = 21 \text{ cm} \][/tex]
3. Calculate the multiplication factor:
- We need to determine by what factor the radius of sphere A (24 cm) is multiplied to obtain the radius of sphere B (21 cm).
- This factor is found by dividing the radius of sphere B by the radius of sphere A:
[tex]\[ \text{Factor} = \frac{\text{Radius of sphere B}}{\text{Radius of sphere A}} = \frac{21 \text{ cm}}{24 \text{ cm}} \][/tex]
4. Simplify the fraction:
- Simplify the fraction [tex]\(\frac{21}{24}\)[/tex]:
[tex]\[ \frac{21}{24} = \frac{21 \div 3}{24 \div 3} = \frac{7}{8} \][/tex]
Therefore, the radius of sphere A is multiplied by [tex]\(\frac{7}{8}\)[/tex] to produce the radius of sphere B.
The correct answer is [tex]\(\boxed{\frac{7}{8}}\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.