Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the factor by which the radius of sphere A is multiplied to produce the radius of sphere B, follow these steps:
1. Identify the radius of sphere A:
- The radius of sphere A is given as 24 centimeters.
2. Determine the radius of sphere B:
- The diameter of sphere B is given as 42 centimeters.
- Since the radius is half the diameter, calculate the radius of sphere B:
[tex]\[ \text{Radius of sphere B} = \frac{\text{Diameter of sphere B}}{2} = \frac{42 \text{ cm}}{2} = 21 \text{ cm} \][/tex]
3. Calculate the multiplication factor:
- We need to determine by what factor the radius of sphere A (24 cm) is multiplied to obtain the radius of sphere B (21 cm).
- This factor is found by dividing the radius of sphere B by the radius of sphere A:
[tex]\[ \text{Factor} = \frac{\text{Radius of sphere B}}{\text{Radius of sphere A}} = \frac{21 \text{ cm}}{24 \text{ cm}} \][/tex]
4. Simplify the fraction:
- Simplify the fraction [tex]\(\frac{21}{24}\)[/tex]:
[tex]\[ \frac{21}{24} = \frac{21 \div 3}{24 \div 3} = \frac{7}{8} \][/tex]
Therefore, the radius of sphere A is multiplied by [tex]\(\frac{7}{8}\)[/tex] to produce the radius of sphere B.
The correct answer is [tex]\(\boxed{\frac{7}{8}}\)[/tex].
1. Identify the radius of sphere A:
- The radius of sphere A is given as 24 centimeters.
2. Determine the radius of sphere B:
- The diameter of sphere B is given as 42 centimeters.
- Since the radius is half the diameter, calculate the radius of sphere B:
[tex]\[ \text{Radius of sphere B} = \frac{\text{Diameter of sphere B}}{2} = \frac{42 \text{ cm}}{2} = 21 \text{ cm} \][/tex]
3. Calculate the multiplication factor:
- We need to determine by what factor the radius of sphere A (24 cm) is multiplied to obtain the radius of sphere B (21 cm).
- This factor is found by dividing the radius of sphere B by the radius of sphere A:
[tex]\[ \text{Factor} = \frac{\text{Radius of sphere B}}{\text{Radius of sphere A}} = \frac{21 \text{ cm}}{24 \text{ cm}} \][/tex]
4. Simplify the fraction:
- Simplify the fraction [tex]\(\frac{21}{24}\)[/tex]:
[tex]\[ \frac{21}{24} = \frac{21 \div 3}{24 \div 3} = \frac{7}{8} \][/tex]
Therefore, the radius of sphere A is multiplied by [tex]\(\frac{7}{8}\)[/tex] to produce the radius of sphere B.
The correct answer is [tex]\(\boxed{\frac{7}{8}}\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.