Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the amplitude of the function [tex]\( y = \frac{1}{2} \sin(2x) \)[/tex], let's go through the properties of a sine function.
The general form of a sine function is:
[tex]\[ y = A \sin(Bx + C) \][/tex]
Where:
- [tex]\( A \)[/tex] represents the amplitude.
- [tex]\( B \)[/tex] affects the period of the sine wave.
- [tex]\( C \)[/tex] represents the phase shift.
The amplitude of a sine function is the absolute value of the coefficient [tex]\( A \)[/tex] in front of the sine function. The amplitude tells us how far the peaks and the troughs of the sine wave reach from the central axis (y = 0).
In the given function [tex]\( y = \frac{1}{2} \sin(2x) \)[/tex], the coefficient [tex]\( A \)[/tex] in front of the sine function is [tex]\( \frac{1}{2} \)[/tex].
Therefore, the amplitude of the function [tex]\( y = \frac{1}{2} \sin(2x) \)[/tex] is:
[tex]\[ \text{Amplitude} = \left| \frac{1}{2} \right| = \frac{1}{2} \][/tex]
Thus, the correct answer is:
A. [tex]\(\frac{1}{2}\)[/tex]
The general form of a sine function is:
[tex]\[ y = A \sin(Bx + C) \][/tex]
Where:
- [tex]\( A \)[/tex] represents the amplitude.
- [tex]\( B \)[/tex] affects the period of the sine wave.
- [tex]\( C \)[/tex] represents the phase shift.
The amplitude of a sine function is the absolute value of the coefficient [tex]\( A \)[/tex] in front of the sine function. The amplitude tells us how far the peaks and the troughs of the sine wave reach from the central axis (y = 0).
In the given function [tex]\( y = \frac{1}{2} \sin(2x) \)[/tex], the coefficient [tex]\( A \)[/tex] in front of the sine function is [tex]\( \frac{1}{2} \)[/tex].
Therefore, the amplitude of the function [tex]\( y = \frac{1}{2} \sin(2x) \)[/tex] is:
[tex]\[ \text{Amplitude} = \left| \frac{1}{2} \right| = \frac{1}{2} \][/tex]
Thus, the correct answer is:
A. [tex]\(\frac{1}{2}\)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.