Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the amplitude of the function [tex]\( y = \frac{1}{2} \sin(2x) \)[/tex], let's go through the properties of a sine function.
The general form of a sine function is:
[tex]\[ y = A \sin(Bx + C) \][/tex]
Where:
- [tex]\( A \)[/tex] represents the amplitude.
- [tex]\( B \)[/tex] affects the period of the sine wave.
- [tex]\( C \)[/tex] represents the phase shift.
The amplitude of a sine function is the absolute value of the coefficient [tex]\( A \)[/tex] in front of the sine function. The amplitude tells us how far the peaks and the troughs of the sine wave reach from the central axis (y = 0).
In the given function [tex]\( y = \frac{1}{2} \sin(2x) \)[/tex], the coefficient [tex]\( A \)[/tex] in front of the sine function is [tex]\( \frac{1}{2} \)[/tex].
Therefore, the amplitude of the function [tex]\( y = \frac{1}{2} \sin(2x) \)[/tex] is:
[tex]\[ \text{Amplitude} = \left| \frac{1}{2} \right| = \frac{1}{2} \][/tex]
Thus, the correct answer is:
A. [tex]\(\frac{1}{2}\)[/tex]
The general form of a sine function is:
[tex]\[ y = A \sin(Bx + C) \][/tex]
Where:
- [tex]\( A \)[/tex] represents the amplitude.
- [tex]\( B \)[/tex] affects the period of the sine wave.
- [tex]\( C \)[/tex] represents the phase shift.
The amplitude of a sine function is the absolute value of the coefficient [tex]\( A \)[/tex] in front of the sine function. The amplitude tells us how far the peaks and the troughs of the sine wave reach from the central axis (y = 0).
In the given function [tex]\( y = \frac{1}{2} \sin(2x) \)[/tex], the coefficient [tex]\( A \)[/tex] in front of the sine function is [tex]\( \frac{1}{2} \)[/tex].
Therefore, the amplitude of the function [tex]\( y = \frac{1}{2} \sin(2x) \)[/tex] is:
[tex]\[ \text{Amplitude} = \left| \frac{1}{2} \right| = \frac{1}{2} \][/tex]
Thus, the correct answer is:
A. [tex]\(\frac{1}{2}\)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.