Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's complete the proof step-by-step.
[tex]\[ \begin{tabular}{|l|l|} \hline \textbf{Statements} & \textbf{Reasons} \\ \hline $AB=3, BC=5$, and $CA=3.5$ & Given \\ $LM=6.3, MN=9$, and $NL=5.4$ & Given \\ \hline $\frac{NL}{AB}=\frac{5.4}{3}$ & Definition of ratio \\ $\frac{MN}{BC}=\frac{9}{5}$ & Substitution property of equality \\ $\frac{LM}{CA}=\frac{6.3}{3.5}$ & Definition of ratio \\ \hline $\frac{5.4}{3}=1.8$ & Division of values \\ $\frac{9}{5}=1.8$ & Division of values \\ $\frac{6.3}{3.5}=1.8$ & Division of values \\ \hline $\frac{NL}{AB}=\frac{MN}{BC}=\frac{LM}{CA}$ & Transitive property of equality (if all ratios are equal) \\ \hline $\triangle ABC \sim \triangle LNM$ & If corresponding side lengths of two triangles are in proportion, then the triangles are similar (by the SSS similarity criterion) \\ \hline \end{tabular} \][/tex]
Thus, we have demonstrated that triangles [tex]\( \triangle ABC \)[/tex] and [tex]\( \triangle LNM \)[/tex] are similar because the ratio of their corresponding sides is equal.
[tex]\[ \begin{tabular}{|l|l|} \hline \textbf{Statements} & \textbf{Reasons} \\ \hline $AB=3, BC=5$, and $CA=3.5$ & Given \\ $LM=6.3, MN=9$, and $NL=5.4$ & Given \\ \hline $\frac{NL}{AB}=\frac{5.4}{3}$ & Definition of ratio \\ $\frac{MN}{BC}=\frac{9}{5}$ & Substitution property of equality \\ $\frac{LM}{CA}=\frac{6.3}{3.5}$ & Definition of ratio \\ \hline $\frac{5.4}{3}=1.8$ & Division of values \\ $\frac{9}{5}=1.8$ & Division of values \\ $\frac{6.3}{3.5}=1.8$ & Division of values \\ \hline $\frac{NL}{AB}=\frac{MN}{BC}=\frac{LM}{CA}$ & Transitive property of equality (if all ratios are equal) \\ \hline $\triangle ABC \sim \triangle LNM$ & If corresponding side lengths of two triangles are in proportion, then the triangles are similar (by the SSS similarity criterion) \\ \hline \end{tabular} \][/tex]
Thus, we have demonstrated that triangles [tex]\( \triangle ABC \)[/tex] and [tex]\( \triangle LNM \)[/tex] are similar because the ratio of their corresponding sides is equal.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.