Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's break down the problem step by step:
### Part (a): Calculate Angular Momentum
We are given:
- Torque ([tex]\( \tau \)[/tex]) = 0.12 [tex]\( \text{N} \cdot \text{m} \)[/tex]
- Time ([tex]\( t \)[/tex]) = 0.65 [tex]\( \text{s} \)[/tex]
Angular momentum ([tex]\( L \)[/tex]) is given by the product of torque and time:
[tex]\[ L = \tau \cdot t \][/tex]
By substituting the given values:
[tex]\[ L = 0.12 \, \text{N} \cdot \text{m} \times 0.65 \, \text{s} \][/tex]
So, the angular momentum [tex]\( L \)[/tex] is:
[tex]\[ L = 0.078 \, \text{N} \cdot \text{m} \cdot \text{s} \][/tex]
### Part (b): Calculate Angular Speed
We are additionally given:
- Moment of Inertia ([tex]\( I \)[/tex]) = [tex]\( 2.5 \times 10^{-3} \, \text{kg} \cdot \text{m}^2 \)[/tex]
First, find the angular acceleration ([tex]\( \alpha \)[/tex]). Angular acceleration is given by:
[tex]\[ \alpha = \frac{\tau}{I} \][/tex]
By substituting the given values:
[tex]\[ \alpha = \frac{0.12 \, \text{N} \cdot \text{m}}{2.5 \times 10^{-3} \, \text{kg} \cdot \text{m}^2} \][/tex]
So, the angular acceleration [tex]\( \alpha \)[/tex] is:
[tex]\[ \alpha = 48.0 \, \text{rad/s}^2 \][/tex]
Now, to find the angular speed ([tex]\( \omega \)[/tex]) after time [tex]\( t \)[/tex]:
[tex]\[ \omega = \alpha \cdot t \][/tex]
By substituting the values of [tex]\( \alpha \)[/tex] and [tex]\( t \)[/tex]:
[tex]\[ \omega = 48.0 \, \text{rad/s}^2 \times 0.65 \, \text{s} \][/tex]
So, the angular speed [tex]\( \omega \)[/tex] is:
[tex]\[ \omega = 31.2 \, \text{rad/s} \][/tex]
### Summary:
- Angular Momentum: [tex]\( 0.078 \, \text{N} \cdot \text{m} \cdot \text{s} \)[/tex]
- Angular Speed: [tex]\( 31.2 \, \text{rad/s} \)[/tex]
### Part (a): Calculate Angular Momentum
We are given:
- Torque ([tex]\( \tau \)[/tex]) = 0.12 [tex]\( \text{N} \cdot \text{m} \)[/tex]
- Time ([tex]\( t \)[/tex]) = 0.65 [tex]\( \text{s} \)[/tex]
Angular momentum ([tex]\( L \)[/tex]) is given by the product of torque and time:
[tex]\[ L = \tau \cdot t \][/tex]
By substituting the given values:
[tex]\[ L = 0.12 \, \text{N} \cdot \text{m} \times 0.65 \, \text{s} \][/tex]
So, the angular momentum [tex]\( L \)[/tex] is:
[tex]\[ L = 0.078 \, \text{N} \cdot \text{m} \cdot \text{s} \][/tex]
### Part (b): Calculate Angular Speed
We are additionally given:
- Moment of Inertia ([tex]\( I \)[/tex]) = [tex]\( 2.5 \times 10^{-3} \, \text{kg} \cdot \text{m}^2 \)[/tex]
First, find the angular acceleration ([tex]\( \alpha \)[/tex]). Angular acceleration is given by:
[tex]\[ \alpha = \frac{\tau}{I} \][/tex]
By substituting the given values:
[tex]\[ \alpha = \frac{0.12 \, \text{N} \cdot \text{m}}{2.5 \times 10^{-3} \, \text{kg} \cdot \text{m}^2} \][/tex]
So, the angular acceleration [tex]\( \alpha \)[/tex] is:
[tex]\[ \alpha = 48.0 \, \text{rad/s}^2 \][/tex]
Now, to find the angular speed ([tex]\( \omega \)[/tex]) after time [tex]\( t \)[/tex]:
[tex]\[ \omega = \alpha \cdot t \][/tex]
By substituting the values of [tex]\( \alpha \)[/tex] and [tex]\( t \)[/tex]:
[tex]\[ \omega = 48.0 \, \text{rad/s}^2 \times 0.65 \, \text{s} \][/tex]
So, the angular speed [tex]\( \omega \)[/tex] is:
[tex]\[ \omega = 31.2 \, \text{rad/s} \][/tex]
### Summary:
- Angular Momentum: [tex]\( 0.078 \, \text{N} \cdot \text{m} \cdot \text{s} \)[/tex]
- Angular Speed: [tex]\( 31.2 \, \text{rad/s} \)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.