Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's break down the problem step by step:
### Part (a): Calculate Angular Momentum
We are given:
- Torque ([tex]\( \tau \)[/tex]) = 0.12 [tex]\( \text{N} \cdot \text{m} \)[/tex]
- Time ([tex]\( t \)[/tex]) = 0.65 [tex]\( \text{s} \)[/tex]
Angular momentum ([tex]\( L \)[/tex]) is given by the product of torque and time:
[tex]\[ L = \tau \cdot t \][/tex]
By substituting the given values:
[tex]\[ L = 0.12 \, \text{N} \cdot \text{m} \times 0.65 \, \text{s} \][/tex]
So, the angular momentum [tex]\( L \)[/tex] is:
[tex]\[ L = 0.078 \, \text{N} \cdot \text{m} \cdot \text{s} \][/tex]
### Part (b): Calculate Angular Speed
We are additionally given:
- Moment of Inertia ([tex]\( I \)[/tex]) = [tex]\( 2.5 \times 10^{-3} \, \text{kg} \cdot \text{m}^2 \)[/tex]
First, find the angular acceleration ([tex]\( \alpha \)[/tex]). Angular acceleration is given by:
[tex]\[ \alpha = \frac{\tau}{I} \][/tex]
By substituting the given values:
[tex]\[ \alpha = \frac{0.12 \, \text{N} \cdot \text{m}}{2.5 \times 10^{-3} \, \text{kg} \cdot \text{m}^2} \][/tex]
So, the angular acceleration [tex]\( \alpha \)[/tex] is:
[tex]\[ \alpha = 48.0 \, \text{rad/s}^2 \][/tex]
Now, to find the angular speed ([tex]\( \omega \)[/tex]) after time [tex]\( t \)[/tex]:
[tex]\[ \omega = \alpha \cdot t \][/tex]
By substituting the values of [tex]\( \alpha \)[/tex] and [tex]\( t \)[/tex]:
[tex]\[ \omega = 48.0 \, \text{rad/s}^2 \times 0.65 \, \text{s} \][/tex]
So, the angular speed [tex]\( \omega \)[/tex] is:
[tex]\[ \omega = 31.2 \, \text{rad/s} \][/tex]
### Summary:
- Angular Momentum: [tex]\( 0.078 \, \text{N} \cdot \text{m} \cdot \text{s} \)[/tex]
- Angular Speed: [tex]\( 31.2 \, \text{rad/s} \)[/tex]
### Part (a): Calculate Angular Momentum
We are given:
- Torque ([tex]\( \tau \)[/tex]) = 0.12 [tex]\( \text{N} \cdot \text{m} \)[/tex]
- Time ([tex]\( t \)[/tex]) = 0.65 [tex]\( \text{s} \)[/tex]
Angular momentum ([tex]\( L \)[/tex]) is given by the product of torque and time:
[tex]\[ L = \tau \cdot t \][/tex]
By substituting the given values:
[tex]\[ L = 0.12 \, \text{N} \cdot \text{m} \times 0.65 \, \text{s} \][/tex]
So, the angular momentum [tex]\( L \)[/tex] is:
[tex]\[ L = 0.078 \, \text{N} \cdot \text{m} \cdot \text{s} \][/tex]
### Part (b): Calculate Angular Speed
We are additionally given:
- Moment of Inertia ([tex]\( I \)[/tex]) = [tex]\( 2.5 \times 10^{-3} \, \text{kg} \cdot \text{m}^2 \)[/tex]
First, find the angular acceleration ([tex]\( \alpha \)[/tex]). Angular acceleration is given by:
[tex]\[ \alpha = \frac{\tau}{I} \][/tex]
By substituting the given values:
[tex]\[ \alpha = \frac{0.12 \, \text{N} \cdot \text{m}}{2.5 \times 10^{-3} \, \text{kg} \cdot \text{m}^2} \][/tex]
So, the angular acceleration [tex]\( \alpha \)[/tex] is:
[tex]\[ \alpha = 48.0 \, \text{rad/s}^2 \][/tex]
Now, to find the angular speed ([tex]\( \omega \)[/tex]) after time [tex]\( t \)[/tex]:
[tex]\[ \omega = \alpha \cdot t \][/tex]
By substituting the values of [tex]\( \alpha \)[/tex] and [tex]\( t \)[/tex]:
[tex]\[ \omega = 48.0 \, \text{rad/s}^2 \times 0.65 \, \text{s} \][/tex]
So, the angular speed [tex]\( \omega \)[/tex] is:
[tex]\[ \omega = 31.2 \, \text{rad/s} \][/tex]
### Summary:
- Angular Momentum: [tex]\( 0.078 \, \text{N} \cdot \text{m} \cdot \text{s} \)[/tex]
- Angular Speed: [tex]\( 31.2 \, \text{rad/s} \)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.