Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the problem, let's break it down step by step and understand the changes in profits for both locations over time.
### First Location Analysis:
1. Initial profit = [tex]$3,000. 2. Decrease in profit = 1.5% per week. We can express a 1.5% decrease as a multiplication factor. A 1.5% decrease corresponds to multiplying by (100% - 1.5%) = 98.5%, or 0.985. So, the profit \( y \) after \( x \) weeks can be represented by the equation: \[ y_1 = 3000 \times 0.985^x \] ### Second Location Analysis: 1. Initial profit = $[/tex]1,500.
2. Increase in profit = 1.2% per week.
We can express a 1.2% increase as a multiplication factor. A 1.2% increase corresponds to multiplying by (100% + 1.2%) = 101.2%, or 1.012.
So, the profit [tex]\( y \)[/tex] after [tex]\( x \)[/tex] weeks can be represented by the equation:
[tex]\[ y_2 = 1500 \times 1.012^x \][/tex]
### System of Equations:
To determine when the profits from the two locations are the same, we need a system of equations that sets the two profit equations equal to each other. From the above analysis, we have:
[tex]\[ y = 3000 \times 0.985^x \][/tex]
[tex]\[ y = 1500 \times 1.012^x \][/tex]
Now, let's look at the provided answer choices:
A. [tex]\( y = 3000 \times (1.015)^x \)[/tex]
[tex]\( y = 1500 \times (1.012)^{\infty} \)[/tex]
B. [tex]\( y = -3000 \times (1.015)^a \)[/tex]
[tex]\( y = 1500 \times (1.012)^2 \)[/tex]
C. [tex]\( y = -3000 \times (0.985)^x \)[/tex]
[tex]\( y = 1500 \times (1.012)^2 \)[/tex]
D. [tex]\( y = 3000 \times (0.985)^x \)[/tex]
[tex]\( y = 1500 \times (1.012)^x \)[/tex]
The correct system of equations for the profit [tex]\( y \)[/tex] to be equal for both locations is:
[tex]\[ y = 3000 \times 0.985^x \][/tex]
[tex]\[ y = 1500 \times 1.012^x \][/tex]
Thus, the correct answer is:
D. [tex]\( y = 3000 \times (0.985)^x \)[/tex]
[tex]\[ y = 1500 \times (1.012)^x \][/tex]
### First Location Analysis:
1. Initial profit = [tex]$3,000. 2. Decrease in profit = 1.5% per week. We can express a 1.5% decrease as a multiplication factor. A 1.5% decrease corresponds to multiplying by (100% - 1.5%) = 98.5%, or 0.985. So, the profit \( y \) after \( x \) weeks can be represented by the equation: \[ y_1 = 3000 \times 0.985^x \] ### Second Location Analysis: 1. Initial profit = $[/tex]1,500.
2. Increase in profit = 1.2% per week.
We can express a 1.2% increase as a multiplication factor. A 1.2% increase corresponds to multiplying by (100% + 1.2%) = 101.2%, or 1.012.
So, the profit [tex]\( y \)[/tex] after [tex]\( x \)[/tex] weeks can be represented by the equation:
[tex]\[ y_2 = 1500 \times 1.012^x \][/tex]
### System of Equations:
To determine when the profits from the two locations are the same, we need a system of equations that sets the two profit equations equal to each other. From the above analysis, we have:
[tex]\[ y = 3000 \times 0.985^x \][/tex]
[tex]\[ y = 1500 \times 1.012^x \][/tex]
Now, let's look at the provided answer choices:
A. [tex]\( y = 3000 \times (1.015)^x \)[/tex]
[tex]\( y = 1500 \times (1.012)^{\infty} \)[/tex]
B. [tex]\( y = -3000 \times (1.015)^a \)[/tex]
[tex]\( y = 1500 \times (1.012)^2 \)[/tex]
C. [tex]\( y = -3000 \times (0.985)^x \)[/tex]
[tex]\( y = 1500 \times (1.012)^2 \)[/tex]
D. [tex]\( y = 3000 \times (0.985)^x \)[/tex]
[tex]\( y = 1500 \times (1.012)^x \)[/tex]
The correct system of equations for the profit [tex]\( y \)[/tex] to be equal for both locations is:
[tex]\[ y = 3000 \times 0.985^x \][/tex]
[tex]\[ y = 1500 \times 1.012^x \][/tex]
Thus, the correct answer is:
D. [tex]\( y = 3000 \times (0.985)^x \)[/tex]
[tex]\[ y = 1500 \times (1.012)^x \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.