Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the [tex]\(x\)[/tex]-intercepts of the curve [tex]\(C\)[/tex] defined by the equation [tex]\(y = 3x - x\sqrt{x}\)[/tex], we need to determine the values of [tex]\(x\)[/tex] where [tex]\(y = 0\)[/tex].
1. Starting with the equation:
[tex]\[ y = 3x - x\sqrt{x} \][/tex]
2. Set [tex]\(y\)[/tex] to zero to find the [tex]\(x\)[/tex]-intercepts:
[tex]\[ 0 = 3x - x\sqrt{x} \][/tex]
3. Factor out [tex]\(x\)[/tex] from the right-hand side:
[tex]\[ 0 = x (3 - \sqrt{x}) \][/tex]
This equation implies that the product of [tex]\(x\)[/tex] and [tex]\((3 - \sqrt{x})\)[/tex] is zero. Therefore, we set each factor to zero separately to solve for [tex]\(x\)[/tex].
4. Solve the first factor:
[tex]\[ x = 0 \][/tex]
5. Solve the second factor:
[tex]\[ 3 - \sqrt{x} = 0 \][/tex]
6. Isolating [tex]\(\sqrt{x}\)[/tex]:
[tex]\[ \sqrt{x} = 3 \][/tex]
7. Squaring both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ x = 9 \][/tex]
Since [tex]\(x \geq 0\)[/tex], the [tex]\(x\)[/tex]-intercepts are [tex]\(x = 0\)[/tex] and [tex]\(x = 9\)[/tex].
8. Now write the coordinates of the [tex]\(x\)[/tex]-intercepts:
[tex]\[ (0, 0) \quad \text{and} \quad (9, 0) \][/tex]
Thus, the coordinates of the [tex]\(x\)[/tex]-intercepts of the curve are [tex]\((0, 0)\)[/tex] and [tex]\((9, 0)\)[/tex].
1. Starting with the equation:
[tex]\[ y = 3x - x\sqrt{x} \][/tex]
2. Set [tex]\(y\)[/tex] to zero to find the [tex]\(x\)[/tex]-intercepts:
[tex]\[ 0 = 3x - x\sqrt{x} \][/tex]
3. Factor out [tex]\(x\)[/tex] from the right-hand side:
[tex]\[ 0 = x (3 - \sqrt{x}) \][/tex]
This equation implies that the product of [tex]\(x\)[/tex] and [tex]\((3 - \sqrt{x})\)[/tex] is zero. Therefore, we set each factor to zero separately to solve for [tex]\(x\)[/tex].
4. Solve the first factor:
[tex]\[ x = 0 \][/tex]
5. Solve the second factor:
[tex]\[ 3 - \sqrt{x} = 0 \][/tex]
6. Isolating [tex]\(\sqrt{x}\)[/tex]:
[tex]\[ \sqrt{x} = 3 \][/tex]
7. Squaring both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ x = 9 \][/tex]
Since [tex]\(x \geq 0\)[/tex], the [tex]\(x\)[/tex]-intercepts are [tex]\(x = 0\)[/tex] and [tex]\(x = 9\)[/tex].
8. Now write the coordinates of the [tex]\(x\)[/tex]-intercepts:
[tex]\[ (0, 0) \quad \text{and} \quad (9, 0) \][/tex]
Thus, the coordinates of the [tex]\(x\)[/tex]-intercepts of the curve are [tex]\((0, 0)\)[/tex] and [tex]\((9, 0)\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.