Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's carefully analyze the given problem and equation to determine the meaning of the variable [tex]\(x\)[/tex] in the context of Sean's jogging routine.
Sean began jogging to live a healthier lifestyle. The problem states:
1. On his first run, he ran one-half mile.
2. He increased his workouts by adding two miles a month to his run.
3. He wrote the equation [tex]\( f(x) = 0.5 + 2x \)[/tex] to model his progress.
The equation provided is [tex]\( f(x) = 0.5 + 2x \)[/tex].
Now, let's break down what each part of the equation represents:
- The term [tex]\( 0.5 \)[/tex] represents the initial distance he ran, which is one-half mile.
- The term [tex]\( 2x \)[/tex] represents the additional miles he adds over time.
To understand what the variable [tex]\( x \)[/tex] stands for, consider the units of the terms and how they contribute to modeling the mileage Sean runs:
- The [tex]\( 0.5 \)[/tex] is a constant, meaning he started with half a mile.
- The [tex]\( 2x \)[/tex] is a variable term that changes each month. The coefficient [tex]\( 2 \)[/tex] indicates that Sean adds 2 miles each month to his run.
Since he adds [tex]\( 2 \)[/tex] miles each month, [tex]\( x \)[/tex] must represent the number of months he has been running. Each month that passes, [tex]\( x \)[/tex] increases by 1, and thus the term [tex]\( 2x \)[/tex] increases accordingly by 2 miles each month.
Let's test it out:
- After 0 months (initially), [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0.5 + 2 \times 0 = 0.5 \text{ miles (initial run)} \][/tex]
- After 1 month, [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 0.5 + 2 \times 1 = 2.5 \text{ miles (first month run)} \][/tex]
- After 2 months, [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 0.5 + 2 \times 2 = 4.5 \text{ miles (second month run)} \][/tex]
In every scenario, [tex]\( f(x) = 0.5 + 2x \)[/tex] correctly models Sean's increasing mileage based on the number of months he has been running.
Therefore, the variable [tex]\( x \)[/tex] represents the number of months he runs.
So the correct answer is:
months he runs.
Sean began jogging to live a healthier lifestyle. The problem states:
1. On his first run, he ran one-half mile.
2. He increased his workouts by adding two miles a month to his run.
3. He wrote the equation [tex]\( f(x) = 0.5 + 2x \)[/tex] to model his progress.
The equation provided is [tex]\( f(x) = 0.5 + 2x \)[/tex].
Now, let's break down what each part of the equation represents:
- The term [tex]\( 0.5 \)[/tex] represents the initial distance he ran, which is one-half mile.
- The term [tex]\( 2x \)[/tex] represents the additional miles he adds over time.
To understand what the variable [tex]\( x \)[/tex] stands for, consider the units of the terms and how they contribute to modeling the mileage Sean runs:
- The [tex]\( 0.5 \)[/tex] is a constant, meaning he started with half a mile.
- The [tex]\( 2x \)[/tex] is a variable term that changes each month. The coefficient [tex]\( 2 \)[/tex] indicates that Sean adds 2 miles each month to his run.
Since he adds [tex]\( 2 \)[/tex] miles each month, [tex]\( x \)[/tex] must represent the number of months he has been running. Each month that passes, [tex]\( x \)[/tex] increases by 1, and thus the term [tex]\( 2x \)[/tex] increases accordingly by 2 miles each month.
Let's test it out:
- After 0 months (initially), [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0.5 + 2 \times 0 = 0.5 \text{ miles (initial run)} \][/tex]
- After 1 month, [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 0.5 + 2 \times 1 = 2.5 \text{ miles (first month run)} \][/tex]
- After 2 months, [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 0.5 + 2 \times 2 = 4.5 \text{ miles (second month run)} \][/tex]
In every scenario, [tex]\( f(x) = 0.5 + 2x \)[/tex] correctly models Sean's increasing mileage based on the number of months he has been running.
Therefore, the variable [tex]\( x \)[/tex] represents the number of months he runs.
So the correct answer is:
months he runs.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.