Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the measure of an interior angle of a regular 15-gon, we need to follow these steps:
1. Understand the Problem:
We are dealing with a regular polygon, specifically a 15-sided polygon (15-gon). A regular polygon means all sides and all interior angles are equal.
2. Identify the Relevant Formula:
The measure of an interior angle of a regular polygon can be found using the formula:
[tex]\[ \text{Interior Angle} = \frac{(n - 2) \times 180^\circ}{n} \][/tex]
where [tex]\( n \)[/tex] is the number of sides of the polygon.
3. Substitute the Given Values:
In our scenario, [tex]\( n = 15 \)[/tex]. Plugging in 15 for [tex]\( n \)[/tex] in the formula gives:
[tex]\[ \text{Interior Angle} = \frac{(15 - 2) \times 180^\circ}{15} \][/tex]
4. Simplify the Expression:
First, subtract within the numerator:
[tex]\[ 15 - 2 = 13 \][/tex]
Then, perform the multiplication:
[tex]\[ 13 \times 180^\circ \][/tex]
And the result is:
[tex]\[ 2340^\circ \][/tex]
Now, divide by the number of sides, 15:
[tex]\[ \frac{2340^\circ}{15} = 156^\circ \][/tex]
5. Conclusion:
The measure of an interior angle of a regular 15-gon is therefore:
[tex]\[ \boxed{156^\circ} \][/tex]
Among the given options, the correct choice is:
- [tex]\[ 156^\circ \][/tex]
1. Understand the Problem:
We are dealing with a regular polygon, specifically a 15-sided polygon (15-gon). A regular polygon means all sides and all interior angles are equal.
2. Identify the Relevant Formula:
The measure of an interior angle of a regular polygon can be found using the formula:
[tex]\[ \text{Interior Angle} = \frac{(n - 2) \times 180^\circ}{n} \][/tex]
where [tex]\( n \)[/tex] is the number of sides of the polygon.
3. Substitute the Given Values:
In our scenario, [tex]\( n = 15 \)[/tex]. Plugging in 15 for [tex]\( n \)[/tex] in the formula gives:
[tex]\[ \text{Interior Angle} = \frac{(15 - 2) \times 180^\circ}{15} \][/tex]
4. Simplify the Expression:
First, subtract within the numerator:
[tex]\[ 15 - 2 = 13 \][/tex]
Then, perform the multiplication:
[tex]\[ 13 \times 180^\circ \][/tex]
And the result is:
[tex]\[ 2340^\circ \][/tex]
Now, divide by the number of sides, 15:
[tex]\[ \frac{2340^\circ}{15} = 156^\circ \][/tex]
5. Conclusion:
The measure of an interior angle of a regular 15-gon is therefore:
[tex]\[ \boxed{156^\circ} \][/tex]
Among the given options, the correct choice is:
- [tex]\[ 156^\circ \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.