Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the equation
[tex]\[ \frac{1+2x}{2} + \frac{2-x}{3} = \frac{19}{6}, \][/tex]
we will go through it step-by-step to simplify and solve for [tex]\( x \)[/tex].
1. Identify and combine common denominators: We'll first combine the fractions on the left side of the equation over a common denominator.
[tex]\[ \frac{1+2x}{2} + \frac{2-x}{3}. \][/tex]
The common denominator of 2 and 3 is 6. So, we'll rewrite each fraction with the common denominator of 6:
[tex]\[ \frac{(1+2x) \cdot 3}{6} + \frac{(2-x) \cdot 2}{6}. \][/tex]
2. Simplify the fractions: Multiply out the numerators:
[tex]\[ \frac{3(1+2x)}{6} + \frac{2(2-x)}{6} = \frac{3 + 6x}{6} + \frac{4 - 2x}{6}. \][/tex]
3. Combine the fractions: Combine the fractions into a single fraction:
[tex]\[ \frac{3 + 6x + 4 - 2x}{6} = \frac{7 + 4x}{6}. \][/tex]
So the original equation now looks like:
[tex]\[ \frac{7 + 4x}{6} = \frac{19}{6}. \][/tex]
4. Eliminate the denominators: Since both sides of the equation have the same denominator, we can multiply through by 6 to get rid of the denominators:
[tex]\[ 7 + 4x = 19. \][/tex]
5. Solve for [tex]\( x \)[/tex]: Isolate the variable [tex]\( x \)[/tex] by subtracting 7 from both sides:
[tex]\[ 4x = 12. \][/tex]
Then, divide both sides by 4 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = 3. \][/tex]
Therefore, the solution to the equation is
[tex]\[ x = 3. \][/tex]
[tex]\[ \frac{1+2x}{2} + \frac{2-x}{3} = \frac{19}{6}, \][/tex]
we will go through it step-by-step to simplify and solve for [tex]\( x \)[/tex].
1. Identify and combine common denominators: We'll first combine the fractions on the left side of the equation over a common denominator.
[tex]\[ \frac{1+2x}{2} + \frac{2-x}{3}. \][/tex]
The common denominator of 2 and 3 is 6. So, we'll rewrite each fraction with the common denominator of 6:
[tex]\[ \frac{(1+2x) \cdot 3}{6} + \frac{(2-x) \cdot 2}{6}. \][/tex]
2. Simplify the fractions: Multiply out the numerators:
[tex]\[ \frac{3(1+2x)}{6} + \frac{2(2-x)}{6} = \frac{3 + 6x}{6} + \frac{4 - 2x}{6}. \][/tex]
3. Combine the fractions: Combine the fractions into a single fraction:
[tex]\[ \frac{3 + 6x + 4 - 2x}{6} = \frac{7 + 4x}{6}. \][/tex]
So the original equation now looks like:
[tex]\[ \frac{7 + 4x}{6} = \frac{19}{6}. \][/tex]
4. Eliminate the denominators: Since both sides of the equation have the same denominator, we can multiply through by 6 to get rid of the denominators:
[tex]\[ 7 + 4x = 19. \][/tex]
5. Solve for [tex]\( x \)[/tex]: Isolate the variable [tex]\( x \)[/tex] by subtracting 7 from both sides:
[tex]\[ 4x = 12. \][/tex]
Then, divide both sides by 4 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = 3. \][/tex]
Therefore, the solution to the equation is
[tex]\[ x = 3. \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.