At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's tackle the given inverse trigonometric functions step-by-step and round each result to the nearest degree.
1. Finding [tex]\(\sin^{-1}\left(\frac{2}{3}\right)\)[/tex]:
- We need to determine the angle whose sine is [tex]\(\frac{2}{3}\)[/tex].
- Using a calculator, [tex]\(\sin^{-1}\left(\frac{2}{3}\right)\)[/tex] gives an angle in radians.
- Converting this angle from radians to degrees, we get approximately 41.81 degrees.
- Rounding to the nearest degree, [tex]\(\sin^{-1}\left(\frac{2}{3}\right) \approx 42^{\circ}\)[/tex].
2. Finding [tex]\(\tan^{-1}(4)\)[/tex]:
- We need to determine the angle whose tangent is 4.
- Using a calculator, [tex]\(\tan^{-1}(4)\)[/tex] gives an angle in radians.
- Converting this angle from radians to degrees, we get approximately 75.96 degrees.
- Rounding to the nearest degree, [tex]\(\tan^{-1}(4) \approx 76^{\circ}\)[/tex].
3. Finding [tex]\(\cos^{-1}(0.1)\)[/tex]:
- We need to determine the angle whose cosine is 0.1.
- Using a calculator, [tex]\(\cos^{-1}(0.1)\)[/tex] gives an angle in radians.
- Converting this angle from radians to degrees, we get approximately 84.26 degrees.
- Rounding to the nearest degree, [tex]\(\cos^{-1}(0.1) \approx 84^{\circ}\)[/tex].
Thus, the rounded values of the inverse trigonometric functions to the nearest degree are:
[tex]\[ \begin{array}{l} \sin ^{-1}\left(\frac{2}{3}\right)=42^{\circ} \\ \tan ^{-1}(4)=76^{\circ} \\ \cos ^{-1}(0.1)=84^{\circ} \end{array} \][/tex]
1. Finding [tex]\(\sin^{-1}\left(\frac{2}{3}\right)\)[/tex]:
- We need to determine the angle whose sine is [tex]\(\frac{2}{3}\)[/tex].
- Using a calculator, [tex]\(\sin^{-1}\left(\frac{2}{3}\right)\)[/tex] gives an angle in radians.
- Converting this angle from radians to degrees, we get approximately 41.81 degrees.
- Rounding to the nearest degree, [tex]\(\sin^{-1}\left(\frac{2}{3}\right) \approx 42^{\circ}\)[/tex].
2. Finding [tex]\(\tan^{-1}(4)\)[/tex]:
- We need to determine the angle whose tangent is 4.
- Using a calculator, [tex]\(\tan^{-1}(4)\)[/tex] gives an angle in radians.
- Converting this angle from radians to degrees, we get approximately 75.96 degrees.
- Rounding to the nearest degree, [tex]\(\tan^{-1}(4) \approx 76^{\circ}\)[/tex].
3. Finding [tex]\(\cos^{-1}(0.1)\)[/tex]:
- We need to determine the angle whose cosine is 0.1.
- Using a calculator, [tex]\(\cos^{-1}(0.1)\)[/tex] gives an angle in radians.
- Converting this angle from radians to degrees, we get approximately 84.26 degrees.
- Rounding to the nearest degree, [tex]\(\cos^{-1}(0.1) \approx 84^{\circ}\)[/tex].
Thus, the rounded values of the inverse trigonometric functions to the nearest degree are:
[tex]\[ \begin{array}{l} \sin ^{-1}\left(\frac{2}{3}\right)=42^{\circ} \\ \tan ^{-1}(4)=76^{\circ} \\ \cos ^{-1}(0.1)=84^{\circ} \end{array} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.