Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the excluded values of [tex]\( x \)[/tex] in the rational expression [tex]\( f(x) = \frac{x^2 + 7x}{x^2 + 14x} \)[/tex], we need to identify the values of [tex]\( x \)[/tex] that make the denominator equal to zero. These values are excluded because division by zero is undefined.
Here’s a detailed, step-by-step solution:
1. Identify the denominator of the rational expression:
The denominator of the given rational expression is [tex]\( x^2 + 14x \)[/tex].
2. Set the denominator equal to zero to find the excluded values:
[tex]\[ x^2 + 14x = 0 \][/tex]
3. Solve the equation [tex]\( x^2 + 14x = 0 \)[/tex]:
Factor out the common factor [tex]\( x \)[/tex]:
[tex]\[ x(x + 14) = 0 \][/tex]
This equation implies two possible solutions when set to zero:
[tex]\[ x = 0 \quad \text{or} \quad x + 14 = 0 \][/tex]
4. Solve for the values of [tex]\( x \)[/tex] in each case:
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ x = 0 \][/tex]
- For [tex]\( x + 14 = 0 \)[/tex]:
[tex]\[ x + 14 = 0 \implies x = -14 \][/tex]
5. List the excluded values:
The excluded values are [tex]\( x = 0 \)[/tex] and [tex]\( x = -14 \)[/tex]. These are the values that make the denominator zero, which makes the rational expression undefined.
In conclusion, the excluded values of [tex]\( x \)[/tex] for the given rational expression are:
[tex]\[ x \neq 0, -14 \][/tex]
Here’s a detailed, step-by-step solution:
1. Identify the denominator of the rational expression:
The denominator of the given rational expression is [tex]\( x^2 + 14x \)[/tex].
2. Set the denominator equal to zero to find the excluded values:
[tex]\[ x^2 + 14x = 0 \][/tex]
3. Solve the equation [tex]\( x^2 + 14x = 0 \)[/tex]:
Factor out the common factor [tex]\( x \)[/tex]:
[tex]\[ x(x + 14) = 0 \][/tex]
This equation implies two possible solutions when set to zero:
[tex]\[ x = 0 \quad \text{or} \quad x + 14 = 0 \][/tex]
4. Solve for the values of [tex]\( x \)[/tex] in each case:
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ x = 0 \][/tex]
- For [tex]\( x + 14 = 0 \)[/tex]:
[tex]\[ x + 14 = 0 \implies x = -14 \][/tex]
5. List the excluded values:
The excluded values are [tex]\( x = 0 \)[/tex] and [tex]\( x = -14 \)[/tex]. These are the values that make the denominator zero, which makes the rational expression undefined.
In conclusion, the excluded values of [tex]\( x \)[/tex] for the given rational expression are:
[tex]\[ x \neq 0, -14 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.