Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, we need to determine the amount of an alloy that is 30% copper to be mixed with an alloy that is 90% copper to create a final alloy that is 50% copper. Let's set up the problem step by step:
1. Define Variables:
- Let [tex]\( x \)[/tex] be the amount (in ounces) of the 30% copper alloy.
- We have [tex]\( 200 \)[/tex] ounces of the 90% copper alloy.
2. Set Up the Equation:
- The amount of copper in the 30% alloy is [tex]\( 0.30x \)[/tex] (since 30% of [tex]\( x \)[/tex] ounces is copper).
- The amount of copper in the 200 ounces of the 90% copper alloy is [tex]\( 0.90 \times 200 \)[/tex].
- The total amount of alloy is [tex]\( x + 200 \)[/tex] ounces.
- We want the final alloy to be 50% copper, so the amount of copper in the final alloy is [tex]\( 0.50 \times (x + 200) \)[/tex].
3. Form the Balance Equation:
- The total amount of copper from both alloys should be equal to the amount of copper in the final alloy:
[tex]\[ 0.30x + 0.90 \times 200 = 0.50 \times (x + 200) \][/tex]
4. Solve the Equation:
- Substitute [tex]\( 0.90 \times 200 = 180 \)[/tex]:
[tex]\[ 0.30x + 180 = 0.50 \times (x + 200) \][/tex]
- Distribute [tex]\( 0.50 \)[/tex] on the right-hand side:
[tex]\[ 0.30x + 180 = 0.50x + 100 \][/tex]
- Rearrange the terms to isolate [tex]\( x \)[/tex]:
[tex]\[ 180 - 100 = 0.50x - 0.30x \][/tex]
- Simplify both sides of the equation:
[tex]\[ 80 = 0.20x \][/tex]
- Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{80}{0.20} \][/tex]
[tex]\[ x = 400 \][/tex]
5. Conclusion:
- Therefore, [tex]\( 400 \)[/tex] ounces of the 30% copper alloy should be mixed with [tex]\( 200 \)[/tex] ounces of the 90% copper alloy to obtain an alloy that is 50% copper.
So, the answer is [tex]\( \boxed{400} \)[/tex] ounces.
1. Define Variables:
- Let [tex]\( x \)[/tex] be the amount (in ounces) of the 30% copper alloy.
- We have [tex]\( 200 \)[/tex] ounces of the 90% copper alloy.
2. Set Up the Equation:
- The amount of copper in the 30% alloy is [tex]\( 0.30x \)[/tex] (since 30% of [tex]\( x \)[/tex] ounces is copper).
- The amount of copper in the 200 ounces of the 90% copper alloy is [tex]\( 0.90 \times 200 \)[/tex].
- The total amount of alloy is [tex]\( x + 200 \)[/tex] ounces.
- We want the final alloy to be 50% copper, so the amount of copper in the final alloy is [tex]\( 0.50 \times (x + 200) \)[/tex].
3. Form the Balance Equation:
- The total amount of copper from both alloys should be equal to the amount of copper in the final alloy:
[tex]\[ 0.30x + 0.90 \times 200 = 0.50 \times (x + 200) \][/tex]
4. Solve the Equation:
- Substitute [tex]\( 0.90 \times 200 = 180 \)[/tex]:
[tex]\[ 0.30x + 180 = 0.50 \times (x + 200) \][/tex]
- Distribute [tex]\( 0.50 \)[/tex] on the right-hand side:
[tex]\[ 0.30x + 180 = 0.50x + 100 \][/tex]
- Rearrange the terms to isolate [tex]\( x \)[/tex]:
[tex]\[ 180 - 100 = 0.50x - 0.30x \][/tex]
- Simplify both sides of the equation:
[tex]\[ 80 = 0.20x \][/tex]
- Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{80}{0.20} \][/tex]
[tex]\[ x = 400 \][/tex]
5. Conclusion:
- Therefore, [tex]\( 400 \)[/tex] ounces of the 30% copper alloy should be mixed with [tex]\( 200 \)[/tex] ounces of the 90% copper alloy to obtain an alloy that is 50% copper.
So, the answer is [tex]\( \boxed{400} \)[/tex] ounces.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.