Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
In solving the equation [tex]\(\frac{x}{2}-7=-7\)[/tex], we need to carefully examine each step to identify when the subtraction property of equality was applied.
Here is the given sequence of steps:
1. [tex]\(\frac{x}{2}-7=-7\)[/tex]
2. [tex]\(\frac{x}{2}-7+7=-7+7\)[/tex]
3. [tex]\(\frac{x}{2}=0\)[/tex]
4. [tex]\(2 \cdot \frac{x}{2}=2 \cdot 0\)[/tex]
5. [tex]\(x=0\)[/tex]
The subtraction property of equality states that if you subtract the same value from both sides of an equation, the resulting equation will still hold true. In this particular case:
- In Step 2, the equation [tex]\(\frac{x}{2}-7=-7\)[/tex] was modified by adding 7 to both sides, resulting in [tex]\(\frac{x}{2}-7+7=-7+7\)[/tex]. This step effectively cancels out the [tex]\(-7\)[/tex] on the left side of the equation:
[tex]\[\frac{x}{2}-7+7 = -7+7\][/tex]
Simplifies to:
[tex]\[\frac{x}{2} = 0\][/tex]
Thus, the operation performed in Step 2 is crucial because it involved the application of the rule allowing the addition of 7 to both sides, effectively using the concept that subtracting -7+7 is equivalent to zeroizing the constant on the left side.
Therefore, the subtraction property of equality was key in Step 2.
The correct answer is:
A. step 2
Here is the given sequence of steps:
1. [tex]\(\frac{x}{2}-7=-7\)[/tex]
2. [tex]\(\frac{x}{2}-7+7=-7+7\)[/tex]
3. [tex]\(\frac{x}{2}=0\)[/tex]
4. [tex]\(2 \cdot \frac{x}{2}=2 \cdot 0\)[/tex]
5. [tex]\(x=0\)[/tex]
The subtraction property of equality states that if you subtract the same value from both sides of an equation, the resulting equation will still hold true. In this particular case:
- In Step 2, the equation [tex]\(\frac{x}{2}-7=-7\)[/tex] was modified by adding 7 to both sides, resulting in [tex]\(\frac{x}{2}-7+7=-7+7\)[/tex]. This step effectively cancels out the [tex]\(-7\)[/tex] on the left side of the equation:
[tex]\[\frac{x}{2}-7+7 = -7+7\][/tex]
Simplifies to:
[tex]\[\frac{x}{2} = 0\][/tex]
Thus, the operation performed in Step 2 is crucial because it involved the application of the rule allowing the addition of 7 to both sides, effectively using the concept that subtracting -7+7 is equivalent to zeroizing the constant on the left side.
Therefore, the subtraction property of equality was key in Step 2.
The correct answer is:
A. step 2
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.