Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine if [tex]\( w = 3 \)[/tex] is a valid solution for the given equations, we should solve each equation separately.
### Equation A: [tex]\( w^2 = 9 \)[/tex]
1. Recall that squaring a number means multiplying it by itself.
2. [tex]\( w^2 = 9 \)[/tex] implies we need to find a number [tex]\( w \)[/tex] such that when it is squared, the result is 9.
3. The two-square roots of 9 are [tex]\( 3 \)[/tex] and [tex]\( -3 \)[/tex] because:
[tex]\[ 3^2 = 9 \quad \text{and} \quad (-3)^2 = 9 \][/tex]
4. Therefore, [tex]\( w = 3 \)[/tex] is indeed one of the solutions to the equation [tex]\( w^2 = 9 \)[/tex].
### Equation B: [tex]\( w^3 = 27 \)[/tex]
1. Here, cubing a number means multiplying the number by itself three times.
2. [tex]\( w^3 = 27 \)[/tex] implies we need to find a number [tex]\( w \)[/tex] such that when it is cubed, the result is 27.
3. The cube root of 27 is [tex]\( 3 \)[/tex] because:
[tex]\[ 3^3 = 3 \times 3 \times 3 = 27 \][/tex]
4. Therefore, [tex]\( w = 3 \)[/tex] is the unique real solution to the equation [tex]\( w^3 = 27 \)[/tex].
### Conclusion
Both equations [tex]\( w^2 = 9 \)[/tex] and [tex]\( w^3 = 27 \)[/tex] have [tex]\( w = 3 \)[/tex] as a possible value. Therefore, both A and B are correct answers.
So the final answer is:
A and B
### Equation A: [tex]\( w^2 = 9 \)[/tex]
1. Recall that squaring a number means multiplying it by itself.
2. [tex]\( w^2 = 9 \)[/tex] implies we need to find a number [tex]\( w \)[/tex] such that when it is squared, the result is 9.
3. The two-square roots of 9 are [tex]\( 3 \)[/tex] and [tex]\( -3 \)[/tex] because:
[tex]\[ 3^2 = 9 \quad \text{and} \quad (-3)^2 = 9 \][/tex]
4. Therefore, [tex]\( w = 3 \)[/tex] is indeed one of the solutions to the equation [tex]\( w^2 = 9 \)[/tex].
### Equation B: [tex]\( w^3 = 27 \)[/tex]
1. Here, cubing a number means multiplying the number by itself three times.
2. [tex]\( w^3 = 27 \)[/tex] implies we need to find a number [tex]\( w \)[/tex] such that when it is cubed, the result is 27.
3. The cube root of 27 is [tex]\( 3 \)[/tex] because:
[tex]\[ 3^3 = 3 \times 3 \times 3 = 27 \][/tex]
4. Therefore, [tex]\( w = 3 \)[/tex] is the unique real solution to the equation [tex]\( w^3 = 27 \)[/tex].
### Conclusion
Both equations [tex]\( w^2 = 9 \)[/tex] and [tex]\( w^3 = 27 \)[/tex] have [tex]\( w = 3 \)[/tex] as a possible value. Therefore, both A and B are correct answers.
So the final answer is:
A and B
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.