Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which fraction represents the repeating decimal [tex]\(0.\overline{12}\)[/tex], we'll follow a systematic method to convert it to a fraction.
1. Let [tex]\( x \)[/tex] be the repeating decimal:
[tex]\[ x = 0.121212\ldots \][/tex]
2. Multiply both sides of this equation by 100 to shift the decimal point two places to the right (since the repeating block is two digits long):
[tex]\[ 100x = 12.121212\ldots \][/tex]
3. Subtract the original [tex]\( x = 0.121212\ldots \)[/tex] from this new equation:
[tex]\[ 100x - x = 12.121212\ldots - 0.121212\ldots \][/tex]
[tex]\[ 99x = 12 \][/tex]
4. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 99:
[tex]\[ x = \frac{12}{99} \][/tex]
5. Simplify the fraction [tex]\( \frac{12}{99} \)[/tex]:
To do this, find the greatest common divisor (GCD) of 12 and 99, which is 3:
[tex]\[ \frac{12 \div 3}{99 \div 3} = \frac{4}{33} \][/tex]
So, the fraction that represents the repeating decimal [tex]\(0.\overline{12}\)[/tex] is [tex]\( \frac{4}{33} \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{\frac{4}{33}} \][/tex]
1. Let [tex]\( x \)[/tex] be the repeating decimal:
[tex]\[ x = 0.121212\ldots \][/tex]
2. Multiply both sides of this equation by 100 to shift the decimal point two places to the right (since the repeating block is two digits long):
[tex]\[ 100x = 12.121212\ldots \][/tex]
3. Subtract the original [tex]\( x = 0.121212\ldots \)[/tex] from this new equation:
[tex]\[ 100x - x = 12.121212\ldots - 0.121212\ldots \][/tex]
[tex]\[ 99x = 12 \][/tex]
4. Solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 99:
[tex]\[ x = \frac{12}{99} \][/tex]
5. Simplify the fraction [tex]\( \frac{12}{99} \)[/tex]:
To do this, find the greatest common divisor (GCD) of 12 and 99, which is 3:
[tex]\[ \frac{12 \div 3}{99 \div 3} = \frac{4}{33} \][/tex]
So, the fraction that represents the repeating decimal [tex]\(0.\overline{12}\)[/tex] is [tex]\( \frac{4}{33} \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{\frac{4}{33}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.