Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the slope of the line that passes through the points (-5, 8) and (-5, 4), follow these steps:
### 1. Identify the Coordinates
First, identify the coordinates of the two points through which the line passes:
- Point 1: [tex]\((-5, 8)\)[/tex]
- Point 2: [tex]\((-5, 4)\)[/tex]
### 2. Calculate the Difference in Y-Coordinates
Next, compute the difference between the y-coordinates of the two points:
[tex]\[ \Delta y = y_2 - y_1 = 4 - 8 = -4 \][/tex]
### 3. Calculate the Difference in X-Coordinates
Then, compute the difference between the x-coordinates of the two points:
[tex]\[ \Delta x = x_2 - x_1 = -5 - (-5) = -5 + 5 = 0 \][/tex]
### 4. Determine the Slope
The formula for the slope ([tex]\(m\)[/tex]) of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the calculated differences:
[tex]\[ m = \frac{-4}{0} \][/tex]
### 5. Identify the Nature of the Slope
When the difference in x-coordinates ([tex]\(\Delta x\)[/tex]) is 0, the divisor of the slope formula becomes zero. Dividing by zero is undefined in mathematics.
### Conclusion
Since [tex]\(\Delta x = 0\)[/tex], the slope of the line passing through the points (-5, 8) and (-5, 4) is undefined. This implies that the line is vertical.
### 1. Identify the Coordinates
First, identify the coordinates of the two points through which the line passes:
- Point 1: [tex]\((-5, 8)\)[/tex]
- Point 2: [tex]\((-5, 4)\)[/tex]
### 2. Calculate the Difference in Y-Coordinates
Next, compute the difference between the y-coordinates of the two points:
[tex]\[ \Delta y = y_2 - y_1 = 4 - 8 = -4 \][/tex]
### 3. Calculate the Difference in X-Coordinates
Then, compute the difference between the x-coordinates of the two points:
[tex]\[ \Delta x = x_2 - x_1 = -5 - (-5) = -5 + 5 = 0 \][/tex]
### 4. Determine the Slope
The formula for the slope ([tex]\(m\)[/tex]) of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the calculated differences:
[tex]\[ m = \frac{-4}{0} \][/tex]
### 5. Identify the Nature of the Slope
When the difference in x-coordinates ([tex]\(\Delta x\)[/tex]) is 0, the divisor of the slope formula becomes zero. Dividing by zero is undefined in mathematics.
### Conclusion
Since [tex]\(\Delta x = 0\)[/tex], the slope of the line passing through the points (-5, 8) and (-5, 4) is undefined. This implies that the line is vertical.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.