Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's analyze the given data and interpret the results step-by-step. The table provides the frequency of each number rolled on a number cube.
| Number Rolled | Frequency |
|---------------|-----------|
| 1 | 11 |
| 2 | 16 |
| 3 | 14 |
| 4 | 20 |
| 5 | 12 |
| 6 | 17 |
First, we calculate the total number of rolls:
Total rolls = 11 + 16 + 14 + 20 + 12 + 17 = 90
Next, let's find the relative frequency of rolling a 4:
Relative frequency of rolling a 4 = Frequency of 4 / Total rolls
= 20 / 90
= 0.2222222222222222
Converting 0.2222222222222222 to a fraction, we get:
0.2222222222222222 = 2/9
So, the relative frequency of rolling a 4 is indeed [tex]\( \frac{2}{9} \)[/tex].
Now, let's move on to the experimental probability of rolling a 3:
Experimental probability of rolling a 3 = Frequency of 3 / Total rolls
= 14 / 90
= 0.15555555555555556
The theoretical probability of rolling any specific number on a fair six-sided die (number cube) is calculated as:
Theoretical probability of rolling a specific number = 1 / 6
= 0.16666666666666666
Finally, we compare the experimental probability of rolling a 3 to the theoretical probability:
0.15555555555555556 (experimental) < 0.16666666666666666 (theoretical)
Thus, the experimental probability of rolling a 3 is not greater than the theoretical probability of rolling a 3.
Summarizing the results:
1. The relative frequency of rolling a 4 is [tex]\( \frac{2}{9} \)[/tex].
2. The experimental probability of rolling a 3 is not greater than the theoretical probability of rolling a 3.
Based on the analysis, it seems like these are the most relevant and true statements for this situation:
- The relative frequency of rolling a 4 is [tex]\( \frac{2}{9} \)[/tex].
- The experimental probability of rolling a 3 is not greater than the theoretical probability of rolling a 3.
| Number Rolled | Frequency |
|---------------|-----------|
| 1 | 11 |
| 2 | 16 |
| 3 | 14 |
| 4 | 20 |
| 5 | 12 |
| 6 | 17 |
First, we calculate the total number of rolls:
Total rolls = 11 + 16 + 14 + 20 + 12 + 17 = 90
Next, let's find the relative frequency of rolling a 4:
Relative frequency of rolling a 4 = Frequency of 4 / Total rolls
= 20 / 90
= 0.2222222222222222
Converting 0.2222222222222222 to a fraction, we get:
0.2222222222222222 = 2/9
So, the relative frequency of rolling a 4 is indeed [tex]\( \frac{2}{9} \)[/tex].
Now, let's move on to the experimental probability of rolling a 3:
Experimental probability of rolling a 3 = Frequency of 3 / Total rolls
= 14 / 90
= 0.15555555555555556
The theoretical probability of rolling any specific number on a fair six-sided die (number cube) is calculated as:
Theoretical probability of rolling a specific number = 1 / 6
= 0.16666666666666666
Finally, we compare the experimental probability of rolling a 3 to the theoretical probability:
0.15555555555555556 (experimental) < 0.16666666666666666 (theoretical)
Thus, the experimental probability of rolling a 3 is not greater than the theoretical probability of rolling a 3.
Summarizing the results:
1. The relative frequency of rolling a 4 is [tex]\( \frac{2}{9} \)[/tex].
2. The experimental probability of rolling a 3 is not greater than the theoretical probability of rolling a 3.
Based on the analysis, it seems like these are the most relevant and true statements for this situation:
- The relative frequency of rolling a 4 is [tex]\( \frac{2}{9} \)[/tex].
- The experimental probability of rolling a 3 is not greater than the theoretical probability of rolling a 3.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.