Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's determine which one of the given expressions is a monomial.
A monomial is an algebraic expression that consists of only one term. That term may be a constant, a variable, or a product of constants and variables with non-negative integer exponents.
Let's analyze each option:
A. [tex]\(20 x^{11} - 3x\)[/tex]:
- This expression consists of two terms, [tex]\(20 x^{11}\)[/tex] and [tex]\(-3x\)[/tex].
- Since it has more than one term, it is not a monomial.
B. [tex]\(11 x - 9\)[/tex]:
- This expression consists of two terms, [tex]\(11x\)[/tex] and [tex]\(-9\)[/tex].
- Since it has more than one term, it is not a monomial.
C. [tex]\(\frac{9}{x}\)[/tex]:
- This can be rewritten as [tex]\(9x^{-1}\)[/tex] which involves a negative exponent.
- Monomials cannot have negative exponents, so this is not a monomial.
D. [tex]\(20 x^{11}\)[/tex]:
- This expression consists of a single term and the exponent [tex]\(11\)[/tex] is a non-negative integer.
- This fits the definition of a monomial.
Therefore, the correct answer is:
D. [tex]\(20 x^{11}\)[/tex]
A monomial is an algebraic expression that consists of only one term. That term may be a constant, a variable, or a product of constants and variables with non-negative integer exponents.
Let's analyze each option:
A. [tex]\(20 x^{11} - 3x\)[/tex]:
- This expression consists of two terms, [tex]\(20 x^{11}\)[/tex] and [tex]\(-3x\)[/tex].
- Since it has more than one term, it is not a monomial.
B. [tex]\(11 x - 9\)[/tex]:
- This expression consists of two terms, [tex]\(11x\)[/tex] and [tex]\(-9\)[/tex].
- Since it has more than one term, it is not a monomial.
C. [tex]\(\frac{9}{x}\)[/tex]:
- This can be rewritten as [tex]\(9x^{-1}\)[/tex] which involves a negative exponent.
- Monomials cannot have negative exponents, so this is not a monomial.
D. [tex]\(20 x^{11}\)[/tex]:
- This expression consists of a single term and the exponent [tex]\(11\)[/tex] is a non-negative integer.
- This fits the definition of a monomial.
Therefore, the correct answer is:
D. [tex]\(20 x^{11}\)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.