Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the domain and range of the function [tex]\( f(x) = x^4 - 2x^2 - 4 \)[/tex], we need to analyze the behavior of the function.
### Step 1: Determining the Domain
The function [tex]\( f(x) = x^4 - 2x^2 - 4 \)[/tex] is a polynomial function. Polynomial functions are defined for all real numbers since there are no restrictions (like division by zero or taking the square root of a negative number) that limit the domain.
Domain: All real numbers
### Step 2: Determining the Range
To find the range, we need to analyze where the function [tex]\( f(x) \)[/tex] takes its minimum and maximum values.
### Step 2.1: Finding Critical Points
Critical points occur where the first derivative [tex]\( f'(x) \)[/tex] is zero or undefined. Let's find [tex]\( f'(x) \)[/tex]:
[tex]\[ f(x) = x^4 - 2x^2 - 4 \][/tex]
[tex]\[ f'(x) = 4x^3 - 4x \][/tex]
Set the first derivative equal to zero to find critical points:
[tex]\[ 4x^3 - 4x = 0 \][/tex]
[tex]\[ 4x(x^2 - 1) = 0 \][/tex]
[tex]\[ 4x(x - 1)(x + 1) = 0 \][/tex]
The critical points are:
[tex]\[ x = 0, 1, -1 \][/tex]
### Step 2.2: Evaluating the Function at Critical Points
Next, evaluate the function [tex]\( f(x) \)[/tex] at these critical points:
[tex]\[ f(0) = (0)^4 - 2(0)^2 - 4 = -4 \][/tex]
[tex]\[ f(1) = (1)^4 - 2(1)^2 - 4 = 1 - 2 - 4 = -5 \][/tex]
[tex]\[ f(-1) = (-1)^4 - 2(-1)^2 - 4 = 1 - 2 - 4 = -5 \][/tex]
### Step 2.3: Evaluating Limits as [tex]\( x \)[/tex] Approaches Infinity
Since [tex]\( f(x) = x^4 - 2x^2 - 4 \)[/tex] is a polynomial with a leading term [tex]\( x^4 \)[/tex], as [tex]\( x \)[/tex] approaches infinity or negative infinity, the [tex]\( x^4 \)[/tex] term dominates:
[tex]\[ \lim_{x \to \infty} f(x) = \infty \][/tex]
[tex]\[ \lim_{x \to -\infty} f(x) = \infty \][/tex]
From these evaluations, we see that the lowest function value occurs at [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex], where [tex]\( f(1) = f(-1) = -5 \)[/tex].
### Step 2.4: Conclusion on Range
Since [tex]\( f(x) \)[/tex] has a minimum value of [tex]\(-5\)[/tex] and goes to infinity as [tex]\( x \)[/tex] goes to positive or negative infinity, the range is all real numbers greater than or equal to [tex]\(-5\)[/tex].
Range: All real numbers greater than or equal to [tex]\(-5\)[/tex]
### Final Answer
The function [tex]\( f(x) = x^4 - 2x^2 - 4 \)[/tex] has:
- Domain: All real numbers
- Range: All real numbers greater than or equal to [tex]\(-5\)[/tex]
### Step 1: Determining the Domain
The function [tex]\( f(x) = x^4 - 2x^2 - 4 \)[/tex] is a polynomial function. Polynomial functions are defined for all real numbers since there are no restrictions (like division by zero or taking the square root of a negative number) that limit the domain.
Domain: All real numbers
### Step 2: Determining the Range
To find the range, we need to analyze where the function [tex]\( f(x) \)[/tex] takes its minimum and maximum values.
### Step 2.1: Finding Critical Points
Critical points occur where the first derivative [tex]\( f'(x) \)[/tex] is zero or undefined. Let's find [tex]\( f'(x) \)[/tex]:
[tex]\[ f(x) = x^4 - 2x^2 - 4 \][/tex]
[tex]\[ f'(x) = 4x^3 - 4x \][/tex]
Set the first derivative equal to zero to find critical points:
[tex]\[ 4x^3 - 4x = 0 \][/tex]
[tex]\[ 4x(x^2 - 1) = 0 \][/tex]
[tex]\[ 4x(x - 1)(x + 1) = 0 \][/tex]
The critical points are:
[tex]\[ x = 0, 1, -1 \][/tex]
### Step 2.2: Evaluating the Function at Critical Points
Next, evaluate the function [tex]\( f(x) \)[/tex] at these critical points:
[tex]\[ f(0) = (0)^4 - 2(0)^2 - 4 = -4 \][/tex]
[tex]\[ f(1) = (1)^4 - 2(1)^2 - 4 = 1 - 2 - 4 = -5 \][/tex]
[tex]\[ f(-1) = (-1)^4 - 2(-1)^2 - 4 = 1 - 2 - 4 = -5 \][/tex]
### Step 2.3: Evaluating Limits as [tex]\( x \)[/tex] Approaches Infinity
Since [tex]\( f(x) = x^4 - 2x^2 - 4 \)[/tex] is a polynomial with a leading term [tex]\( x^4 \)[/tex], as [tex]\( x \)[/tex] approaches infinity or negative infinity, the [tex]\( x^4 \)[/tex] term dominates:
[tex]\[ \lim_{x \to \infty} f(x) = \infty \][/tex]
[tex]\[ \lim_{x \to -\infty} f(x) = \infty \][/tex]
From these evaluations, we see that the lowest function value occurs at [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex], where [tex]\( f(1) = f(-1) = -5 \)[/tex].
### Step 2.4: Conclusion on Range
Since [tex]\( f(x) \)[/tex] has a minimum value of [tex]\(-5\)[/tex] and goes to infinity as [tex]\( x \)[/tex] goes to positive or negative infinity, the range is all real numbers greater than or equal to [tex]\(-5\)[/tex].
Range: All real numbers greater than or equal to [tex]\(-5\)[/tex]
### Final Answer
The function [tex]\( f(x) = x^4 - 2x^2 - 4 \)[/tex] has:
- Domain: All real numbers
- Range: All real numbers greater than or equal to [tex]\(-5\)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.