Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve this problem, let's go through the steps one by one:
1. Identify Given Information:
- We are given that a similarity transformation maps [tex]\(\triangle ABC\)[/tex] to [tex]\(\triangle MNO\)[/tex] with a scale factor of 0.5.
- In [tex]\(\triangle MNO\)[/tex], [tex]\(OM = 5\)[/tex].
- The corresponding vertices are [tex]\(M \leftrightarrow A\)[/tex], [tex]\(N \leftrightarrow B\)[/tex], and [tex]\(O \leftrightarrow C\)[/tex].
- In [tex]\(\triangle ABC\)[/tex], [tex]\(CA = 2x\)[/tex], and we need to find [tex]\(x\)[/tex] (which corresponds to [tex]\(AB\)[/tex]).
2. Use the Scale Factor Relationship:
- The similarity transformation means that each side of [tex]\(\triangle MNO\)[/tex] is 0.5 (or half) of the respective side in [tex]\(\triangle ABC\)[/tex].
- [tex]\(OM\)[/tex] in [tex]\(\triangle MNO\)[/tex] corresponds to [tex]\(CA\)[/tex] in [tex]\(\triangle ABC\)[/tex].
3. Relate the Corresponding Sides:
- Given [tex]\(OM = 5\)[/tex] and knowing the scale factor from [tex]\(\triangle ABC\)[/tex] to [tex]\(\triangle MNO\)[/tex] is 0.5, we can set up the following relationship:
[tex]\[ OM = 0.5 \times CA \][/tex]
- Substituting the given value of [tex]\(OM\)[/tex]:
[tex]\[ 5 = 0.5 \times CA \][/tex]
- Solving for [tex]\(CA\)[/tex]:
[tex]\[ CA = \frac{5}{0.5} = 10 \][/tex]
4. Determine [tex]\(AB\)[/tex]:
- We know [tex]\(CA = 2x\)[/tex] from [tex]\(\triangle ABC\)[/tex]:
[tex]\[ 2x = CA \][/tex]
- Since [tex]\(CA = 10\)[/tex]:
[tex]\[ 2x = 10 \][/tex]
- Solving for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{10}{2} = 5 \][/tex]
Thus, [tex]\(AB = x = 5\)[/tex].
So, the correct answer is:
[tex]\[ C. \, AB = 5 \][/tex]
1. Identify Given Information:
- We are given that a similarity transformation maps [tex]\(\triangle ABC\)[/tex] to [tex]\(\triangle MNO\)[/tex] with a scale factor of 0.5.
- In [tex]\(\triangle MNO\)[/tex], [tex]\(OM = 5\)[/tex].
- The corresponding vertices are [tex]\(M \leftrightarrow A\)[/tex], [tex]\(N \leftrightarrow B\)[/tex], and [tex]\(O \leftrightarrow C\)[/tex].
- In [tex]\(\triangle ABC\)[/tex], [tex]\(CA = 2x\)[/tex], and we need to find [tex]\(x\)[/tex] (which corresponds to [tex]\(AB\)[/tex]).
2. Use the Scale Factor Relationship:
- The similarity transformation means that each side of [tex]\(\triangle MNO\)[/tex] is 0.5 (or half) of the respective side in [tex]\(\triangle ABC\)[/tex].
- [tex]\(OM\)[/tex] in [tex]\(\triangle MNO\)[/tex] corresponds to [tex]\(CA\)[/tex] in [tex]\(\triangle ABC\)[/tex].
3. Relate the Corresponding Sides:
- Given [tex]\(OM = 5\)[/tex] and knowing the scale factor from [tex]\(\triangle ABC\)[/tex] to [tex]\(\triangle MNO\)[/tex] is 0.5, we can set up the following relationship:
[tex]\[ OM = 0.5 \times CA \][/tex]
- Substituting the given value of [tex]\(OM\)[/tex]:
[tex]\[ 5 = 0.5 \times CA \][/tex]
- Solving for [tex]\(CA\)[/tex]:
[tex]\[ CA = \frac{5}{0.5} = 10 \][/tex]
4. Determine [tex]\(AB\)[/tex]:
- We know [tex]\(CA = 2x\)[/tex] from [tex]\(\triangle ABC\)[/tex]:
[tex]\[ 2x = CA \][/tex]
- Since [tex]\(CA = 10\)[/tex]:
[tex]\[ 2x = 10 \][/tex]
- Solving for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{10}{2} = 5 \][/tex]
Thus, [tex]\(AB = x = 5\)[/tex].
So, the correct answer is:
[tex]\[ C. \, AB = 5 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.