Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's solve the problem of determining in how many ways 50 cards can be chosen from a standard deck of 52 cards.
1. Understanding the Problem:
- We have a standard deck of 52 cards.
- We want to choose 50 cards from this deck.
- This is a combinatorial problem, where we need to find the number of combinations (ways to choose a subset) of 50 cards from 52 cards.
2. Combinatorial Formula:
- The number of ways to choose [tex]\( k \)[/tex] items from [tex]\( n \)[/tex] items without regard to order is given by the binomial coefficient, denoted as [tex]\( \binom{n}{k} \)[/tex].
- The formula for the binomial coefficient is:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n - k)!} \][/tex]
- Here, [tex]\( n = 52 \)[/tex] (total cards) and [tex]\( k = 50 \)[/tex] (cards to choose).
3. Calculating the Binomial Coefficient:
- Plugging the values into the formula, we get:
[tex]\[ \binom{52}{50} = \frac{52!}{50!(52 - 50)!} = \frac{52!}{50! \cdot 2!} \][/tex]
4. Result:
- Without manually computing the factorials (as it’s quite cumbersome), the number of ways to choose 50 cards from a deck of 52 cards is represented by the binomial coefficient [tex]\( \binom{52}{50} \)[/tex].
- The computed value for this coefficient is 1326.
Therefore, the number of ways to choose 50 cards from a standard deck of 52 cards is 1326.
1. Understanding the Problem:
- We have a standard deck of 52 cards.
- We want to choose 50 cards from this deck.
- This is a combinatorial problem, where we need to find the number of combinations (ways to choose a subset) of 50 cards from 52 cards.
2. Combinatorial Formula:
- The number of ways to choose [tex]\( k \)[/tex] items from [tex]\( n \)[/tex] items without regard to order is given by the binomial coefficient, denoted as [tex]\( \binom{n}{k} \)[/tex].
- The formula for the binomial coefficient is:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n - k)!} \][/tex]
- Here, [tex]\( n = 52 \)[/tex] (total cards) and [tex]\( k = 50 \)[/tex] (cards to choose).
3. Calculating the Binomial Coefficient:
- Plugging the values into the formula, we get:
[tex]\[ \binom{52}{50} = \frac{52!}{50!(52 - 50)!} = \frac{52!}{50! \cdot 2!} \][/tex]
4. Result:
- Without manually computing the factorials (as it’s quite cumbersome), the number of ways to choose 50 cards from a deck of 52 cards is represented by the binomial coefficient [tex]\( \binom{52}{50} \)[/tex].
- The computed value for this coefficient is 1326.
Therefore, the number of ways to choose 50 cards from a standard deck of 52 cards is 1326.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.