Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the force exerted on a charge moving through a magnetic field, we can use the formula for the magnetic Lorentz force:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity of the charge,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field.
Given parameters:
- Charge, [tex]\( q = 2.5 \times 10^{-6} \)[/tex] Coulombs
- Magnetic field strength, [tex]\( B = 3.0 \times 10^2 \)[/tex] Tesla
- Velocity, [tex]\( v = 5.0 \times 10^3 \)[/tex] meters per second
- Since the charge is moving perpendicular to the magnetic field, [tex]\( \theta = 90^\circ \)[/tex]. Therefore, [tex]\( \sin(90^\circ) = 1 \)[/tex].
Let's substitute these values into the formula:
[tex]\[ F = (2.5 \times 10^{-6} C) \cdot (5.0 \times 10^3 \frac{m}{s}) \cdot (3.0 \times 10^2 T) \cdot 1 \][/tex]
First, calculate the product of [tex]\( q \)[/tex] and [tex]\( v \)[/tex]:
[tex]\[ 2.5 \times 10^{-6} \, C \times 5.0 \times 10^3 \, \frac{m}{s} = 12.5 \times 10^{-3} \][/tex]
Next, multiply by [tex]\( B \)[/tex]:
[tex]\[ 12.5 \times 10^{-3} \times 3.0 \times 10^2 = 3.75 \][/tex]
Therefore, the force [tex]\( F \)[/tex] is:
[tex]\[ F = 3.75 \, \text{N} \][/tex]
So, the force exerted on the charge is approximately [tex]\( 3.75 \, \text{N} \)[/tex].
Among the given options, the closest answer to [tex]\( 3.75 \, \text{N} \)[/tex] and represented correctly with significant figures is:
[tex]\[ 3.8 \, \text{N} \][/tex]
Hence, the correct option is:
[tex]\[ 3.8 \, \text{N} \][/tex]
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity of the charge,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field.
Given parameters:
- Charge, [tex]\( q = 2.5 \times 10^{-6} \)[/tex] Coulombs
- Magnetic field strength, [tex]\( B = 3.0 \times 10^2 \)[/tex] Tesla
- Velocity, [tex]\( v = 5.0 \times 10^3 \)[/tex] meters per second
- Since the charge is moving perpendicular to the magnetic field, [tex]\( \theta = 90^\circ \)[/tex]. Therefore, [tex]\( \sin(90^\circ) = 1 \)[/tex].
Let's substitute these values into the formula:
[tex]\[ F = (2.5 \times 10^{-6} C) \cdot (5.0 \times 10^3 \frac{m}{s}) \cdot (3.0 \times 10^2 T) \cdot 1 \][/tex]
First, calculate the product of [tex]\( q \)[/tex] and [tex]\( v \)[/tex]:
[tex]\[ 2.5 \times 10^{-6} \, C \times 5.0 \times 10^3 \, \frac{m}{s} = 12.5 \times 10^{-3} \][/tex]
Next, multiply by [tex]\( B \)[/tex]:
[tex]\[ 12.5 \times 10^{-3} \times 3.0 \times 10^2 = 3.75 \][/tex]
Therefore, the force [tex]\( F \)[/tex] is:
[tex]\[ F = 3.75 \, \text{N} \][/tex]
So, the force exerted on the charge is approximately [tex]\( 3.75 \, \text{N} \)[/tex].
Among the given options, the closest answer to [tex]\( 3.75 \, \text{N} \)[/tex] and represented correctly with significant figures is:
[tex]\[ 3.8 \, \text{N} \][/tex]
Hence, the correct option is:
[tex]\[ 3.8 \, \text{N} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.