Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the force exerted on a charge moving through a magnetic field, we can use the formula for the magnetic Lorentz force:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity of the charge,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field.
Given parameters:
- Charge, [tex]\( q = 2.5 \times 10^{-6} \)[/tex] Coulombs
- Magnetic field strength, [tex]\( B = 3.0 \times 10^2 \)[/tex] Tesla
- Velocity, [tex]\( v = 5.0 \times 10^3 \)[/tex] meters per second
- Since the charge is moving perpendicular to the magnetic field, [tex]\( \theta = 90^\circ \)[/tex]. Therefore, [tex]\( \sin(90^\circ) = 1 \)[/tex].
Let's substitute these values into the formula:
[tex]\[ F = (2.5 \times 10^{-6} C) \cdot (5.0 \times 10^3 \frac{m}{s}) \cdot (3.0 \times 10^2 T) \cdot 1 \][/tex]
First, calculate the product of [tex]\( q \)[/tex] and [tex]\( v \)[/tex]:
[tex]\[ 2.5 \times 10^{-6} \, C \times 5.0 \times 10^3 \, \frac{m}{s} = 12.5 \times 10^{-3} \][/tex]
Next, multiply by [tex]\( B \)[/tex]:
[tex]\[ 12.5 \times 10^{-3} \times 3.0 \times 10^2 = 3.75 \][/tex]
Therefore, the force [tex]\( F \)[/tex] is:
[tex]\[ F = 3.75 \, \text{N} \][/tex]
So, the force exerted on the charge is approximately [tex]\( 3.75 \, \text{N} \)[/tex].
Among the given options, the closest answer to [tex]\( 3.75 \, \text{N} \)[/tex] and represented correctly with significant figures is:
[tex]\[ 3.8 \, \text{N} \][/tex]
Hence, the correct option is:
[tex]\[ 3.8 \, \text{N} \][/tex]
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity of the charge,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field.
Given parameters:
- Charge, [tex]\( q = 2.5 \times 10^{-6} \)[/tex] Coulombs
- Magnetic field strength, [tex]\( B = 3.0 \times 10^2 \)[/tex] Tesla
- Velocity, [tex]\( v = 5.0 \times 10^3 \)[/tex] meters per second
- Since the charge is moving perpendicular to the magnetic field, [tex]\( \theta = 90^\circ \)[/tex]. Therefore, [tex]\( \sin(90^\circ) = 1 \)[/tex].
Let's substitute these values into the formula:
[tex]\[ F = (2.5 \times 10^{-6} C) \cdot (5.0 \times 10^3 \frac{m}{s}) \cdot (3.0 \times 10^2 T) \cdot 1 \][/tex]
First, calculate the product of [tex]\( q \)[/tex] and [tex]\( v \)[/tex]:
[tex]\[ 2.5 \times 10^{-6} \, C \times 5.0 \times 10^3 \, \frac{m}{s} = 12.5 \times 10^{-3} \][/tex]
Next, multiply by [tex]\( B \)[/tex]:
[tex]\[ 12.5 \times 10^{-3} \times 3.0 \times 10^2 = 3.75 \][/tex]
Therefore, the force [tex]\( F \)[/tex] is:
[tex]\[ F = 3.75 \, \text{N} \][/tex]
So, the force exerted on the charge is approximately [tex]\( 3.75 \, \text{N} \)[/tex].
Among the given options, the closest answer to [tex]\( 3.75 \, \text{N} \)[/tex] and represented correctly with significant figures is:
[tex]\[ 3.8 \, \text{N} \][/tex]
Hence, the correct option is:
[tex]\[ 3.8 \, \text{N} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.