At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the horizontal acceleration of the block, we need to analyze the forces involved and use Newton's second law. Here’s a step-by-step explanation:
1. Identification of the Given Data:
- Mass of the block, [tex]\( m = 5 \, \text{kg} \)[/tex]
- Pulling force, [tex]\( F = 26.43 \, \text{N} \)[/tex]
- Angle of the pulling force, [tex]\( \theta = 30^\circ \)[/tex]
- Coefficient of kinetic friction, [tex]\( \mu_k = 0.11 \)[/tex]
- Acceleration due to gravity, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex]
2. Convert the Angle to Radians:
- [tex]\(\theta \)[/tex] in radians is [tex]\( \theta = \frac{\pi}{6} \)[/tex] or [tex]\( \theta \approx 0.5236 \)[/tex] radians.
3. Resolve the Pulling Force into Horizontal and Vertical Components:
- Horizontal component of the force: [tex]\( F_{\text{horizontal}} = F \cos(\theta) \)[/tex]
[tex]\[ F_{\text{horizontal}} = 26.43 \times \cos(30^\circ) \approx 22.89 \, \text{N} \][/tex]
- Vertical component of the force: [tex]\( F_{\text{vertical}} = F \sin(\theta) \)[/tex]
[tex]\[ F_{\text{vertical}} = 26.43 \times \sin(30^\circ) \approx 13.21 \, \text{N} \][/tex]
4. Calculate the Gravitational Force (Weight) and Normal Force:
- Gravitational force: [tex]\( F_{\text{gravity}} = m \times g \)[/tex]
[tex]\[ F_{\text{gravity}} = 5 \times 9.81 \approx 49.05 \, \text{N} \][/tex]
- Normal force: [tex]\( F_{\text{normal}} = F_{\text{gravity}} - F_{\text{vertical}} \)[/tex]
[tex]\[ F_{\text{normal}} = 49.05 - 13.21 \approx 35.84 \, \text{N} \][/tex]
5. Calculate the Frictional Force:
- Frictional force: [tex]\( F_{\text{friction}} = \mu_k \times F_{\text{normal}} \)[/tex]
[tex]\[ F_{\text{friction}} = 0.11 \times 35.84 \approx 3.94 \, \text{N} \][/tex]
6. Determine the Net Horizontal Force Acting on the Block:
- Net horizontal force: [tex]\( F_{\text{net horizontal}} = F_{\text{horizontal}} - F_{\text{friction}} \)[/tex]
[tex]\[ F_{\text{net horizontal}} = 22.89 - 3.94 \approx 18.95 \, \text{N} \][/tex]
7. Calculate the Horizontal Acceleration of the Block:
- Using Newton's second law: [tex]\( F = m \times a \)[/tex]
[tex]\[ a = \frac{F_{\text{net horizontal}}}{m} \][/tex]
[tex]\[ a = \frac{18.95}{5} \approx 3.79 \, \text{m/s}^2 \][/tex]
Therefore, the horizontal acceleration of the block is approximately [tex]\( 3.79 \, \text{m/s}^2 \)[/tex].
1. Identification of the Given Data:
- Mass of the block, [tex]\( m = 5 \, \text{kg} \)[/tex]
- Pulling force, [tex]\( F = 26.43 \, \text{N} \)[/tex]
- Angle of the pulling force, [tex]\( \theta = 30^\circ \)[/tex]
- Coefficient of kinetic friction, [tex]\( \mu_k = 0.11 \)[/tex]
- Acceleration due to gravity, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex]
2. Convert the Angle to Radians:
- [tex]\(\theta \)[/tex] in radians is [tex]\( \theta = \frac{\pi}{6} \)[/tex] or [tex]\( \theta \approx 0.5236 \)[/tex] radians.
3. Resolve the Pulling Force into Horizontal and Vertical Components:
- Horizontal component of the force: [tex]\( F_{\text{horizontal}} = F \cos(\theta) \)[/tex]
[tex]\[ F_{\text{horizontal}} = 26.43 \times \cos(30^\circ) \approx 22.89 \, \text{N} \][/tex]
- Vertical component of the force: [tex]\( F_{\text{vertical}} = F \sin(\theta) \)[/tex]
[tex]\[ F_{\text{vertical}} = 26.43 \times \sin(30^\circ) \approx 13.21 \, \text{N} \][/tex]
4. Calculate the Gravitational Force (Weight) and Normal Force:
- Gravitational force: [tex]\( F_{\text{gravity}} = m \times g \)[/tex]
[tex]\[ F_{\text{gravity}} = 5 \times 9.81 \approx 49.05 \, \text{N} \][/tex]
- Normal force: [tex]\( F_{\text{normal}} = F_{\text{gravity}} - F_{\text{vertical}} \)[/tex]
[tex]\[ F_{\text{normal}} = 49.05 - 13.21 \approx 35.84 \, \text{N} \][/tex]
5. Calculate the Frictional Force:
- Frictional force: [tex]\( F_{\text{friction}} = \mu_k \times F_{\text{normal}} \)[/tex]
[tex]\[ F_{\text{friction}} = 0.11 \times 35.84 \approx 3.94 \, \text{N} \][/tex]
6. Determine the Net Horizontal Force Acting on the Block:
- Net horizontal force: [tex]\( F_{\text{net horizontal}} = F_{\text{horizontal}} - F_{\text{friction}} \)[/tex]
[tex]\[ F_{\text{net horizontal}} = 22.89 - 3.94 \approx 18.95 \, \text{N} \][/tex]
7. Calculate the Horizontal Acceleration of the Block:
- Using Newton's second law: [tex]\( F = m \times a \)[/tex]
[tex]\[ a = \frac{F_{\text{net horizontal}}}{m} \][/tex]
[tex]\[ a = \frac{18.95}{5} \approx 3.79 \, \text{m/s}^2 \][/tex]
Therefore, the horizontal acceleration of the block is approximately [tex]\( 3.79 \, \text{m/s}^2 \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.