Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the horizontal acceleration of the block, we need to analyze the forces involved and use Newton's second law. Here’s a step-by-step explanation:
1. Identification of the Given Data:
- Mass of the block, [tex]\( m = 5 \, \text{kg} \)[/tex]
- Pulling force, [tex]\( F = 26.43 \, \text{N} \)[/tex]
- Angle of the pulling force, [tex]\( \theta = 30^\circ \)[/tex]
- Coefficient of kinetic friction, [tex]\( \mu_k = 0.11 \)[/tex]
- Acceleration due to gravity, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex]
2. Convert the Angle to Radians:
- [tex]\(\theta \)[/tex] in radians is [tex]\( \theta = \frac{\pi}{6} \)[/tex] or [tex]\( \theta \approx 0.5236 \)[/tex] radians.
3. Resolve the Pulling Force into Horizontal and Vertical Components:
- Horizontal component of the force: [tex]\( F_{\text{horizontal}} = F \cos(\theta) \)[/tex]
[tex]\[ F_{\text{horizontal}} = 26.43 \times \cos(30^\circ) \approx 22.89 \, \text{N} \][/tex]
- Vertical component of the force: [tex]\( F_{\text{vertical}} = F \sin(\theta) \)[/tex]
[tex]\[ F_{\text{vertical}} = 26.43 \times \sin(30^\circ) \approx 13.21 \, \text{N} \][/tex]
4. Calculate the Gravitational Force (Weight) and Normal Force:
- Gravitational force: [tex]\( F_{\text{gravity}} = m \times g \)[/tex]
[tex]\[ F_{\text{gravity}} = 5 \times 9.81 \approx 49.05 \, \text{N} \][/tex]
- Normal force: [tex]\( F_{\text{normal}} = F_{\text{gravity}} - F_{\text{vertical}} \)[/tex]
[tex]\[ F_{\text{normal}} = 49.05 - 13.21 \approx 35.84 \, \text{N} \][/tex]
5. Calculate the Frictional Force:
- Frictional force: [tex]\( F_{\text{friction}} = \mu_k \times F_{\text{normal}} \)[/tex]
[tex]\[ F_{\text{friction}} = 0.11 \times 35.84 \approx 3.94 \, \text{N} \][/tex]
6. Determine the Net Horizontal Force Acting on the Block:
- Net horizontal force: [tex]\( F_{\text{net horizontal}} = F_{\text{horizontal}} - F_{\text{friction}} \)[/tex]
[tex]\[ F_{\text{net horizontal}} = 22.89 - 3.94 \approx 18.95 \, \text{N} \][/tex]
7. Calculate the Horizontal Acceleration of the Block:
- Using Newton's second law: [tex]\( F = m \times a \)[/tex]
[tex]\[ a = \frac{F_{\text{net horizontal}}}{m} \][/tex]
[tex]\[ a = \frac{18.95}{5} \approx 3.79 \, \text{m/s}^2 \][/tex]
Therefore, the horizontal acceleration of the block is approximately [tex]\( 3.79 \, \text{m/s}^2 \)[/tex].
1. Identification of the Given Data:
- Mass of the block, [tex]\( m = 5 \, \text{kg} \)[/tex]
- Pulling force, [tex]\( F = 26.43 \, \text{N} \)[/tex]
- Angle of the pulling force, [tex]\( \theta = 30^\circ \)[/tex]
- Coefficient of kinetic friction, [tex]\( \mu_k = 0.11 \)[/tex]
- Acceleration due to gravity, [tex]\( g = 9.81 \, \text{m/s}^2 \)[/tex]
2. Convert the Angle to Radians:
- [tex]\(\theta \)[/tex] in radians is [tex]\( \theta = \frac{\pi}{6} \)[/tex] or [tex]\( \theta \approx 0.5236 \)[/tex] radians.
3. Resolve the Pulling Force into Horizontal and Vertical Components:
- Horizontal component of the force: [tex]\( F_{\text{horizontal}} = F \cos(\theta) \)[/tex]
[tex]\[ F_{\text{horizontal}} = 26.43 \times \cos(30^\circ) \approx 22.89 \, \text{N} \][/tex]
- Vertical component of the force: [tex]\( F_{\text{vertical}} = F \sin(\theta) \)[/tex]
[tex]\[ F_{\text{vertical}} = 26.43 \times \sin(30^\circ) \approx 13.21 \, \text{N} \][/tex]
4. Calculate the Gravitational Force (Weight) and Normal Force:
- Gravitational force: [tex]\( F_{\text{gravity}} = m \times g \)[/tex]
[tex]\[ F_{\text{gravity}} = 5 \times 9.81 \approx 49.05 \, \text{N} \][/tex]
- Normal force: [tex]\( F_{\text{normal}} = F_{\text{gravity}} - F_{\text{vertical}} \)[/tex]
[tex]\[ F_{\text{normal}} = 49.05 - 13.21 \approx 35.84 \, \text{N} \][/tex]
5. Calculate the Frictional Force:
- Frictional force: [tex]\( F_{\text{friction}} = \mu_k \times F_{\text{normal}} \)[/tex]
[tex]\[ F_{\text{friction}} = 0.11 \times 35.84 \approx 3.94 \, \text{N} \][/tex]
6. Determine the Net Horizontal Force Acting on the Block:
- Net horizontal force: [tex]\( F_{\text{net horizontal}} = F_{\text{horizontal}} - F_{\text{friction}} \)[/tex]
[tex]\[ F_{\text{net horizontal}} = 22.89 - 3.94 \approx 18.95 \, \text{N} \][/tex]
7. Calculate the Horizontal Acceleration of the Block:
- Using Newton's second law: [tex]\( F = m \times a \)[/tex]
[tex]\[ a = \frac{F_{\text{net horizontal}}}{m} \][/tex]
[tex]\[ a = \frac{18.95}{5} \approx 3.79 \, \text{m/s}^2 \][/tex]
Therefore, the horizontal acceleration of the block is approximately [tex]\( 3.79 \, \text{m/s}^2 \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.