Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the end behavior of the polynomial function [tex]\( f(x) = 3072 - 6x^5 + 78x^4 - 1680x^2 + 1536x - 60x^3 \)[/tex], we need to focus on the term with the highest degree, as it will dominate the behavior of the function as [tex]\( x \)[/tex] approaches infinity or negative infinity.
1. Identify the leading term:
The term with the highest degree in the polynomial is [tex]\( -6x^5 \)[/tex].
2. Analyze the leading term [tex]\( -6x^5 \)[/tex]:
- When [tex]\( x \to \infty \)[/tex]:
- [tex]\( x^5 \)[/tex] approaches infinity.
- Since the coefficient of [tex]\( x^5 \)[/tex] is negative ([tex]\( -6 \)[/tex]), [tex]\( -6x^5 \)[/tex] will approach negative infinity.
- Thus, [tex]\( f(x) \to -\infty \)[/tex].
- When [tex]\( x \to -\infty \)[/tex]:
- [tex]\( x^5 \)[/tex] approaches negative infinity.
- Since the coefficient of [tex]\( x^5 \)[/tex] is negative ([tex]\( -6 \)[/tex]), [tex]\( -6x^5 \)[/tex] will approach positive infinity.
- Thus, [tex]\( f(x) \to \infty \)[/tex].
So the end behavior of the function [tex]\( f(x) \)[/tex] is:
- As [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].
Therefore, the correct answer is:
- As [tex]\( x \rightarrow \infty, f(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \rightarrow -\infty, f(x) \rightarrow \infty \)[/tex].
So, the correct option is:
[tex]\[ \text{as } x \rightarrow \infty, f(x) \rightarrow -\infty \text{ and as } x \rightarrow -\infty, f(x) \rightarrow \infty \][/tex]
1. Identify the leading term:
The term with the highest degree in the polynomial is [tex]\( -6x^5 \)[/tex].
2. Analyze the leading term [tex]\( -6x^5 \)[/tex]:
- When [tex]\( x \to \infty \)[/tex]:
- [tex]\( x^5 \)[/tex] approaches infinity.
- Since the coefficient of [tex]\( x^5 \)[/tex] is negative ([tex]\( -6 \)[/tex]), [tex]\( -6x^5 \)[/tex] will approach negative infinity.
- Thus, [tex]\( f(x) \to -\infty \)[/tex].
- When [tex]\( x \to -\infty \)[/tex]:
- [tex]\( x^5 \)[/tex] approaches negative infinity.
- Since the coefficient of [tex]\( x^5 \)[/tex] is negative ([tex]\( -6 \)[/tex]), [tex]\( -6x^5 \)[/tex] will approach positive infinity.
- Thus, [tex]\( f(x) \to \infty \)[/tex].
So the end behavior of the function [tex]\( f(x) \)[/tex] is:
- As [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].
Therefore, the correct answer is:
- As [tex]\( x \rightarrow \infty, f(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \rightarrow -\infty, f(x) \rightarrow \infty \)[/tex].
So, the correct option is:
[tex]\[ \text{as } x \rightarrow \infty, f(x) \rightarrow -\infty \text{ and as } x \rightarrow -\infty, f(x) \rightarrow \infty \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.