Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! To find the mean distance of Jupiter from the center of the Sun, denoted as [tex]\( r \)[/tex], we'll use Kepler's Third Law, given by the formula:
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3, \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of Jupiter,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the Sun,
- [tex]\( \pi \)[/tex] is a mathematical constant Pi,
- [tex]\( r \)[/tex] is the mean distance from the Sun.
Given values are:
- [tex]\( T = 3.79 \times 10^8 \)[/tex] seconds,
- [tex]\( M = 1.99 \times 10^{30} \)[/tex] kg,
- [tex]\( G = 6.67 \times 10^{-11} \, \frac{\text{Nm}^2}{\text{kg}^2} \)[/tex],
- [tex]\(\pi = 3.14\)[/tex].
1. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \, \text{seconds}^2 \][/tex]
2. Calculate the constant [tex]\(\frac{4 \pi^2}{G M}\)[/tex]:
[tex]\[ \frac{4 \pi^2}{G M} = \frac{4 \times (3.14)^2}{(6.67 \times 10^{-11}) \times (1.99 \times 10^{30})} \approx 2.971258089548191 \times 10^{-19} \, \text{m}^{-3} \text{s}^2 \][/tex]
3. Using Kepler's Third Law to find [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = T^2 \times \left( \frac{G M}{4 \pi^2} \right) = \frac{1.43641 \times 10^{17}}{2.971258089548191 \times 10^{-19}} = 4.834349479948476 \times 10^{35} \, \text{m}^3 \][/tex]
4. Take the cube root of [tex]\( r^3 \)[/tex] to find [tex]\( r \)[/tex]:
[tex]\[ r = (4.834349479948476 \times 10^{35})^{1/3} \approx 784836780537.7351 \, \text{meters} \][/tex]
Thus, the mean distance [tex]\( r \)[/tex] from Jupiter to the center of the Sun is approximately [tex]\( 7.8 \times 10^{11} \)[/tex] meters.
Hence, the correct answer is:
E. [tex]\( 7.8 \times 10^{11} \)[/tex] meters
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3, \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of Jupiter,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the Sun,
- [tex]\( \pi \)[/tex] is a mathematical constant Pi,
- [tex]\( r \)[/tex] is the mean distance from the Sun.
Given values are:
- [tex]\( T = 3.79 \times 10^8 \)[/tex] seconds,
- [tex]\( M = 1.99 \times 10^{30} \)[/tex] kg,
- [tex]\( G = 6.67 \times 10^{-11} \, \frac{\text{Nm}^2}{\text{kg}^2} \)[/tex],
- [tex]\(\pi = 3.14\)[/tex].
1. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \, \text{seconds}^2 \][/tex]
2. Calculate the constant [tex]\(\frac{4 \pi^2}{G M}\)[/tex]:
[tex]\[ \frac{4 \pi^2}{G M} = \frac{4 \times (3.14)^2}{(6.67 \times 10^{-11}) \times (1.99 \times 10^{30})} \approx 2.971258089548191 \times 10^{-19} \, \text{m}^{-3} \text{s}^2 \][/tex]
3. Using Kepler's Third Law to find [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = T^2 \times \left( \frac{G M}{4 \pi^2} \right) = \frac{1.43641 \times 10^{17}}{2.971258089548191 \times 10^{-19}} = 4.834349479948476 \times 10^{35} \, \text{m}^3 \][/tex]
4. Take the cube root of [tex]\( r^3 \)[/tex] to find [tex]\( r \)[/tex]:
[tex]\[ r = (4.834349479948476 \times 10^{35})^{1/3} \approx 784836780537.7351 \, \text{meters} \][/tex]
Thus, the mean distance [tex]\( r \)[/tex] from Jupiter to the center of the Sun is approximately [tex]\( 7.8 \times 10^{11} \)[/tex] meters.
Hence, the correct answer is:
E. [tex]\( 7.8 \times 10^{11} \)[/tex] meters
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.