Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! To find the mean distance of Jupiter from the center of the Sun, denoted as [tex]\( r \)[/tex], we'll use Kepler's Third Law, given by the formula:
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3, \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of Jupiter,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the Sun,
- [tex]\( \pi \)[/tex] is a mathematical constant Pi,
- [tex]\( r \)[/tex] is the mean distance from the Sun.
Given values are:
- [tex]\( T = 3.79 \times 10^8 \)[/tex] seconds,
- [tex]\( M = 1.99 \times 10^{30} \)[/tex] kg,
- [tex]\( G = 6.67 \times 10^{-11} \, \frac{\text{Nm}^2}{\text{kg}^2} \)[/tex],
- [tex]\(\pi = 3.14\)[/tex].
1. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \, \text{seconds}^2 \][/tex]
2. Calculate the constant [tex]\(\frac{4 \pi^2}{G M}\)[/tex]:
[tex]\[ \frac{4 \pi^2}{G M} = \frac{4 \times (3.14)^2}{(6.67 \times 10^{-11}) \times (1.99 \times 10^{30})} \approx 2.971258089548191 \times 10^{-19} \, \text{m}^{-3} \text{s}^2 \][/tex]
3. Using Kepler's Third Law to find [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = T^2 \times \left( \frac{G M}{4 \pi^2} \right) = \frac{1.43641 \times 10^{17}}{2.971258089548191 \times 10^{-19}} = 4.834349479948476 \times 10^{35} \, \text{m}^3 \][/tex]
4. Take the cube root of [tex]\( r^3 \)[/tex] to find [tex]\( r \)[/tex]:
[tex]\[ r = (4.834349479948476 \times 10^{35})^{1/3} \approx 784836780537.7351 \, \text{meters} \][/tex]
Thus, the mean distance [tex]\( r \)[/tex] from Jupiter to the center of the Sun is approximately [tex]\( 7.8 \times 10^{11} \)[/tex] meters.
Hence, the correct answer is:
E. [tex]\( 7.8 \times 10^{11} \)[/tex] meters
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3, \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of Jupiter,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the Sun,
- [tex]\( \pi \)[/tex] is a mathematical constant Pi,
- [tex]\( r \)[/tex] is the mean distance from the Sun.
Given values are:
- [tex]\( T = 3.79 \times 10^8 \)[/tex] seconds,
- [tex]\( M = 1.99 \times 10^{30} \)[/tex] kg,
- [tex]\( G = 6.67 \times 10^{-11} \, \frac{\text{Nm}^2}{\text{kg}^2} \)[/tex],
- [tex]\(\pi = 3.14\)[/tex].
1. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \, \text{seconds}^2 \][/tex]
2. Calculate the constant [tex]\(\frac{4 \pi^2}{G M}\)[/tex]:
[tex]\[ \frac{4 \pi^2}{G M} = \frac{4 \times (3.14)^2}{(6.67 \times 10^{-11}) \times (1.99 \times 10^{30})} \approx 2.971258089548191 \times 10^{-19} \, \text{m}^{-3} \text{s}^2 \][/tex]
3. Using Kepler's Third Law to find [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = T^2 \times \left( \frac{G M}{4 \pi^2} \right) = \frac{1.43641 \times 10^{17}}{2.971258089548191 \times 10^{-19}} = 4.834349479948476 \times 10^{35} \, \text{m}^3 \][/tex]
4. Take the cube root of [tex]\( r^3 \)[/tex] to find [tex]\( r \)[/tex]:
[tex]\[ r = (4.834349479948476 \times 10^{35})^{1/3} \approx 784836780537.7351 \, \text{meters} \][/tex]
Thus, the mean distance [tex]\( r \)[/tex] from Jupiter to the center of the Sun is approximately [tex]\( 7.8 \times 10^{11} \)[/tex] meters.
Hence, the correct answer is:
E. [tex]\( 7.8 \times 10^{11} \)[/tex] meters
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.