Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Select the correct answer.

The planet Jupiter revolves around the Sun in a period of about 12 years [tex](3.79 \times 10^8 \text{ seconds})[/tex]. What is its mean distance from the center of the Sun? The mass of the Sun is [tex]1.99 \times 10^{30}[/tex] kilograms.

[tex]
G=6.67 \times 10^{-11} \frac{Nm^2}{kg^2} \quad T^2=\frac{4 \pi^2}{G M} r^3 \quad \pi=3.14
[/tex]

A. [tex]1.1 \times 10^{11}[/tex] meters
B. [tex]1.5 \times 10^{11}[/tex] meters
C. [tex]2.3 \times 10^{11}[/tex] meters
D. [tex]5.8 \times 10^{11}[/tex] meters
E. [tex]7.8 \times 10^{11}[/tex] meters

Sagot :

Certainly! To find the mean distance of Jupiter from the center of the Sun, denoted as [tex]\( r \)[/tex], we'll use Kepler's Third Law, given by the formula:

[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3, \][/tex]

where:
- [tex]\( T \)[/tex] is the orbital period of Jupiter,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the Sun,
- [tex]\( \pi \)[/tex] is a mathematical constant Pi,
- [tex]\( r \)[/tex] is the mean distance from the Sun.

Given values are:
- [tex]\( T = 3.79 \times 10^8 \)[/tex] seconds,
- [tex]\( M = 1.99 \times 10^{30} \)[/tex] kg,
- [tex]\( G = 6.67 \times 10^{-11} \, \frac{\text{Nm}^2}{\text{kg}^2} \)[/tex],
- [tex]\(\pi = 3.14\)[/tex].

1. Calculate [tex]\( T^2 \)[/tex]:

[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \, \text{seconds}^2 \][/tex]

2. Calculate the constant [tex]\(\frac{4 \pi^2}{G M}\)[/tex]:

[tex]\[ \frac{4 \pi^2}{G M} = \frac{4 \times (3.14)^2}{(6.67 \times 10^{-11}) \times (1.99 \times 10^{30})} \approx 2.971258089548191 \times 10^{-19} \, \text{m}^{-3} \text{s}^2 \][/tex]

3. Using Kepler's Third Law to find [tex]\( r^3 \)[/tex]:

[tex]\[ r^3 = T^2 \times \left( \frac{G M}{4 \pi^2} \right) = \frac{1.43641 \times 10^{17}}{2.971258089548191 \times 10^{-19}} = 4.834349479948476 \times 10^{35} \, \text{m}^3 \][/tex]

4. Take the cube root of [tex]\( r^3 \)[/tex] to find [tex]\( r \)[/tex]:

[tex]\[ r = (4.834349479948476 \times 10^{35})^{1/3} \approx 784836780537.7351 \, \text{meters} \][/tex]

Thus, the mean distance [tex]\( r \)[/tex] from Jupiter to the center of the Sun is approximately [tex]\( 7.8 \times 10^{11} \)[/tex] meters.

Hence, the correct answer is:

E. [tex]\( 7.8 \times 10^{11} \)[/tex] meters