Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! To find the mean distance of Jupiter from the center of the Sun, denoted as [tex]\( r \)[/tex], we'll use Kepler's Third Law, given by the formula:
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3, \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of Jupiter,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the Sun,
- [tex]\( \pi \)[/tex] is a mathematical constant Pi,
- [tex]\( r \)[/tex] is the mean distance from the Sun.
Given values are:
- [tex]\( T = 3.79 \times 10^8 \)[/tex] seconds,
- [tex]\( M = 1.99 \times 10^{30} \)[/tex] kg,
- [tex]\( G = 6.67 \times 10^{-11} \, \frac{\text{Nm}^2}{\text{kg}^2} \)[/tex],
- [tex]\(\pi = 3.14\)[/tex].
1. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \, \text{seconds}^2 \][/tex]
2. Calculate the constant [tex]\(\frac{4 \pi^2}{G M}\)[/tex]:
[tex]\[ \frac{4 \pi^2}{G M} = \frac{4 \times (3.14)^2}{(6.67 \times 10^{-11}) \times (1.99 \times 10^{30})} \approx 2.971258089548191 \times 10^{-19} \, \text{m}^{-3} \text{s}^2 \][/tex]
3. Using Kepler's Third Law to find [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = T^2 \times \left( \frac{G M}{4 \pi^2} \right) = \frac{1.43641 \times 10^{17}}{2.971258089548191 \times 10^{-19}} = 4.834349479948476 \times 10^{35} \, \text{m}^3 \][/tex]
4. Take the cube root of [tex]\( r^3 \)[/tex] to find [tex]\( r \)[/tex]:
[tex]\[ r = (4.834349479948476 \times 10^{35})^{1/3} \approx 784836780537.7351 \, \text{meters} \][/tex]
Thus, the mean distance [tex]\( r \)[/tex] from Jupiter to the center of the Sun is approximately [tex]\( 7.8 \times 10^{11} \)[/tex] meters.
Hence, the correct answer is:
E. [tex]\( 7.8 \times 10^{11} \)[/tex] meters
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3, \][/tex]
where:
- [tex]\( T \)[/tex] is the orbital period of Jupiter,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( M \)[/tex] is the mass of the Sun,
- [tex]\( \pi \)[/tex] is a mathematical constant Pi,
- [tex]\( r \)[/tex] is the mean distance from the Sun.
Given values are:
- [tex]\( T = 3.79 \times 10^8 \)[/tex] seconds,
- [tex]\( M = 1.99 \times 10^{30} \)[/tex] kg,
- [tex]\( G = 6.67 \times 10^{-11} \, \frac{\text{Nm}^2}{\text{kg}^2} \)[/tex],
- [tex]\(\pi = 3.14\)[/tex].
1. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \, \text{seconds}^2 \][/tex]
2. Calculate the constant [tex]\(\frac{4 \pi^2}{G M}\)[/tex]:
[tex]\[ \frac{4 \pi^2}{G M} = \frac{4 \times (3.14)^2}{(6.67 \times 10^{-11}) \times (1.99 \times 10^{30})} \approx 2.971258089548191 \times 10^{-19} \, \text{m}^{-3} \text{s}^2 \][/tex]
3. Using Kepler's Third Law to find [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = T^2 \times \left( \frac{G M}{4 \pi^2} \right) = \frac{1.43641 \times 10^{17}}{2.971258089548191 \times 10^{-19}} = 4.834349479948476 \times 10^{35} \, \text{m}^3 \][/tex]
4. Take the cube root of [tex]\( r^3 \)[/tex] to find [tex]\( r \)[/tex]:
[tex]\[ r = (4.834349479948476 \times 10^{35})^{1/3} \approx 784836780537.7351 \, \text{meters} \][/tex]
Thus, the mean distance [tex]\( r \)[/tex] from Jupiter to the center of the Sun is approximately [tex]\( 7.8 \times 10^{11} \)[/tex] meters.
Hence, the correct answer is:
E. [tex]\( 7.8 \times 10^{11} \)[/tex] meters
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.