Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve this problem step by step to find the mass of aluminum oxide (Al₂O₃) that could form from 8.0 grams of oxygen (O₂) with an excess of aluminum (Al).
### Step 1: Write the balanced chemical equation
The balanced chemical equation for the reaction is:
[tex]$ 4 \, \text{Al (s)} + 3 \, \text{O}_2 \, \text{(g)} \rightarrow 2 \, \text{Al}_2\text{O}_3 \, \text{(s)} $[/tex]
### Step 2: Determine the molar masses
- Molar mass of [tex]\(\text{O}_2\)[/tex] is [tex]\(32.00 \, \text{g/mol}\)[/tex]
- Molar mass of [tex]\(\text{Al}_2\text{O}_3\)[/tex] is [tex]\(101.96 \, \text{g/mol}\)[/tex]
### Step 3: Convert the given mass of [tex]\(\text{O}_2\)[/tex] to moles
We are given 8.0 grams of [tex]\(\text{O}_2\)[/tex].
To find the number of moles of [tex]\(\text{O}_2\)[/tex]:
[tex]$ \text{moles of } \text{O}_2 = \frac{8.0 \, \text{grams of } \text{O}_2}{32.00 \, \text{g/mol}} = 0.25 \, \text{moles of } \text{O}_2 $[/tex]
### Step 4: Use the stoichiometry of the reaction to find moles of [tex]\(\text{Al}_2\text{O}_3\)[/tex]
According to the balanced reaction, 3 moles of [tex]\(\text{O}_2\)[/tex] produce 2 moles of [tex]\(\text{Al}_2\text{O}_3\)[/tex]. Thus, the moles of [tex]\(\text{Al}_2\text{O}_3\)[/tex] produced can be calculated as:
[tex]$ \text{moles of } \text{Al}_2\text{O}_3 = \left(\frac{2}{3}\right) \times 0.25 \, \text{moles of } \text{O}_2 = 0.16666666666666666 \, \text{moles of } \text{Al}_2\text{O}_3 $[/tex]
### Step 5: Convert the moles of [tex]\(\text{Al}_2\text{O}_3\)[/tex] to mass
Finally, we need to find the mass of [tex]\(\text{Al}_2\text{O}_3\)[/tex] produced:
[tex]$ \text{mass of } \text{Al}_2\text{O}_3 = \text{moles of } \text{Al}_2\text{O}_3 \times \text{molar mass of } \text{Al}_2\text{O}_3 $[/tex]
[tex]$ \text{mass of } \text{Al}_2\text{O}_3 = 0.16666666666666666 \, \text{moles} \times 101.96 \, \text{g/mol} = 16.993333333333332 \, \text{grams} $[/tex]
### Conclusion
The mass of aluminum oxide ([tex]\(\text{Al}_2\text{O}_3\)[/tex]) that could form from 8.0 grams of oxygen ([tex]\(\text{O}_2\)[/tex]) with excess aluminum is approximately [tex]\(17.0 \, \text{grams}\)[/tex].
### Step 1: Write the balanced chemical equation
The balanced chemical equation for the reaction is:
[tex]$ 4 \, \text{Al (s)} + 3 \, \text{O}_2 \, \text{(g)} \rightarrow 2 \, \text{Al}_2\text{O}_3 \, \text{(s)} $[/tex]
### Step 2: Determine the molar masses
- Molar mass of [tex]\(\text{O}_2\)[/tex] is [tex]\(32.00 \, \text{g/mol}\)[/tex]
- Molar mass of [tex]\(\text{Al}_2\text{O}_3\)[/tex] is [tex]\(101.96 \, \text{g/mol}\)[/tex]
### Step 3: Convert the given mass of [tex]\(\text{O}_2\)[/tex] to moles
We are given 8.0 grams of [tex]\(\text{O}_2\)[/tex].
To find the number of moles of [tex]\(\text{O}_2\)[/tex]:
[tex]$ \text{moles of } \text{O}_2 = \frac{8.0 \, \text{grams of } \text{O}_2}{32.00 \, \text{g/mol}} = 0.25 \, \text{moles of } \text{O}_2 $[/tex]
### Step 4: Use the stoichiometry of the reaction to find moles of [tex]\(\text{Al}_2\text{O}_3\)[/tex]
According to the balanced reaction, 3 moles of [tex]\(\text{O}_2\)[/tex] produce 2 moles of [tex]\(\text{Al}_2\text{O}_3\)[/tex]. Thus, the moles of [tex]\(\text{Al}_2\text{O}_3\)[/tex] produced can be calculated as:
[tex]$ \text{moles of } \text{Al}_2\text{O}_3 = \left(\frac{2}{3}\right) \times 0.25 \, \text{moles of } \text{O}_2 = 0.16666666666666666 \, \text{moles of } \text{Al}_2\text{O}_3 $[/tex]
### Step 5: Convert the moles of [tex]\(\text{Al}_2\text{O}_3\)[/tex] to mass
Finally, we need to find the mass of [tex]\(\text{Al}_2\text{O}_3\)[/tex] produced:
[tex]$ \text{mass of } \text{Al}_2\text{O}_3 = \text{moles of } \text{Al}_2\text{O}_3 \times \text{molar mass of } \text{Al}_2\text{O}_3 $[/tex]
[tex]$ \text{mass of } \text{Al}_2\text{O}_3 = 0.16666666666666666 \, \text{moles} \times 101.96 \, \text{g/mol} = 16.993333333333332 \, \text{grams} $[/tex]
### Conclusion
The mass of aluminum oxide ([tex]\(\text{Al}_2\text{O}_3\)[/tex]) that could form from 8.0 grams of oxygen ([tex]\(\text{O}_2\)[/tex]) with excess aluminum is approximately [tex]\(17.0 \, \text{grams}\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.