Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure! Let's walk through the step-by-step solution to find the magnetic field strength given the following information:
- Force ([tex]\( F \)[/tex]) = [tex]\( 1.5 \times 10^2 \)[/tex] N
- Charge ([tex]\( q \)[/tex]) = [tex]\( 1.4 \times 10^{-7} \)[/tex] C
- Velocity ([tex]\( v \)[/tex]) = [tex]\( 1.3 \times 10^6 \)[/tex] m/s
- Angle ([tex]\( \theta \)[/tex]) = [tex]\( 75^\circ \)[/tex]
The formula to find the magnetic field strength ([tex]\( B \)[/tex]) when a charged particle is moving in a magnetic field is given by:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
We can rearrange this formula to solve for [tex]\( B \)[/tex]:
[tex]\[ B = \frac{F}{q \cdot v \cdot \sin(\theta)} \][/tex]
Let's calculate this step by step:
1. Convert the angle from degrees to radians:
[tex]\[ \theta = 75^\circ = \frac{75 \times \pi}{180} \text{ radians} \][/tex]
2. Calculate [tex]\( \sin(\theta) \)[/tex]:
[tex]\[ \sin(75^\circ) \][/tex]
3. Plug in the values:
[tex]\[ B = \frac{1.5 \times 10^2 \text{ N}}{(1.4 \times 10^{-7} \text{ C}) \times (1.3 \times 10^6 \text{ m/s}) \times \sin(75^\circ)} \][/tex]
4. Simplify the expression and compute the result.
By following these steps, we obtain:
[tex]\[ B \approx 853.2495992390795 \text{ T} \][/tex]
Therefore, the magnetic field strength is approximately [tex]\( 853.2495992390795 \)[/tex] T. Given the provided choices:
1. [tex]\( 8.2 \times 10^2 \)[/tex] T
2. [tex]\( 8.5 \times 10^2 \)[/tex] T
3. [tex]\( 3.2 \times 10^3 \)[/tex] T
4. [tex]\( 6.4 \times 10^{10} \)[/tex] T
The closest match to our calculated value is:
[tex]\[ 8.5 \times 10^2 \text{ T} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{8.5 \times 10^2 \text{ T}} \][/tex]
- Force ([tex]\( F \)[/tex]) = [tex]\( 1.5 \times 10^2 \)[/tex] N
- Charge ([tex]\( q \)[/tex]) = [tex]\( 1.4 \times 10^{-7} \)[/tex] C
- Velocity ([tex]\( v \)[/tex]) = [tex]\( 1.3 \times 10^6 \)[/tex] m/s
- Angle ([tex]\( \theta \)[/tex]) = [tex]\( 75^\circ \)[/tex]
The formula to find the magnetic field strength ([tex]\( B \)[/tex]) when a charged particle is moving in a magnetic field is given by:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
We can rearrange this formula to solve for [tex]\( B \)[/tex]:
[tex]\[ B = \frac{F}{q \cdot v \cdot \sin(\theta)} \][/tex]
Let's calculate this step by step:
1. Convert the angle from degrees to radians:
[tex]\[ \theta = 75^\circ = \frac{75 \times \pi}{180} \text{ radians} \][/tex]
2. Calculate [tex]\( \sin(\theta) \)[/tex]:
[tex]\[ \sin(75^\circ) \][/tex]
3. Plug in the values:
[tex]\[ B = \frac{1.5 \times 10^2 \text{ N}}{(1.4 \times 10^{-7} \text{ C}) \times (1.3 \times 10^6 \text{ m/s}) \times \sin(75^\circ)} \][/tex]
4. Simplify the expression and compute the result.
By following these steps, we obtain:
[tex]\[ B \approx 853.2495992390795 \text{ T} \][/tex]
Therefore, the magnetic field strength is approximately [tex]\( 853.2495992390795 \)[/tex] T. Given the provided choices:
1. [tex]\( 8.2 \times 10^2 \)[/tex] T
2. [tex]\( 8.5 \times 10^2 \)[/tex] T
3. [tex]\( 3.2 \times 10^3 \)[/tex] T
4. [tex]\( 6.4 \times 10^{10} \)[/tex] T
The closest match to our calculated value is:
[tex]\[ 8.5 \times 10^2 \text{ T} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{8.5 \times 10^2 \text{ T}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.