Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure! Let's walk through the step-by-step solution to find the magnetic field strength given the following information:
- Force ([tex]\( F \)[/tex]) = [tex]\( 1.5 \times 10^2 \)[/tex] N
- Charge ([tex]\( q \)[/tex]) = [tex]\( 1.4 \times 10^{-7} \)[/tex] C
- Velocity ([tex]\( v \)[/tex]) = [tex]\( 1.3 \times 10^6 \)[/tex] m/s
- Angle ([tex]\( \theta \)[/tex]) = [tex]\( 75^\circ \)[/tex]
The formula to find the magnetic field strength ([tex]\( B \)[/tex]) when a charged particle is moving in a magnetic field is given by:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
We can rearrange this formula to solve for [tex]\( B \)[/tex]:
[tex]\[ B = \frac{F}{q \cdot v \cdot \sin(\theta)} \][/tex]
Let's calculate this step by step:
1. Convert the angle from degrees to radians:
[tex]\[ \theta = 75^\circ = \frac{75 \times \pi}{180} \text{ radians} \][/tex]
2. Calculate [tex]\( \sin(\theta) \)[/tex]:
[tex]\[ \sin(75^\circ) \][/tex]
3. Plug in the values:
[tex]\[ B = \frac{1.5 \times 10^2 \text{ N}}{(1.4 \times 10^{-7} \text{ C}) \times (1.3 \times 10^6 \text{ m/s}) \times \sin(75^\circ)} \][/tex]
4. Simplify the expression and compute the result.
By following these steps, we obtain:
[tex]\[ B \approx 853.2495992390795 \text{ T} \][/tex]
Therefore, the magnetic field strength is approximately [tex]\( 853.2495992390795 \)[/tex] T. Given the provided choices:
1. [tex]\( 8.2 \times 10^2 \)[/tex] T
2. [tex]\( 8.5 \times 10^2 \)[/tex] T
3. [tex]\( 3.2 \times 10^3 \)[/tex] T
4. [tex]\( 6.4 \times 10^{10} \)[/tex] T
The closest match to our calculated value is:
[tex]\[ 8.5 \times 10^2 \text{ T} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{8.5 \times 10^2 \text{ T}} \][/tex]
- Force ([tex]\( F \)[/tex]) = [tex]\( 1.5 \times 10^2 \)[/tex] N
- Charge ([tex]\( q \)[/tex]) = [tex]\( 1.4 \times 10^{-7} \)[/tex] C
- Velocity ([tex]\( v \)[/tex]) = [tex]\( 1.3 \times 10^6 \)[/tex] m/s
- Angle ([tex]\( \theta \)[/tex]) = [tex]\( 75^\circ \)[/tex]
The formula to find the magnetic field strength ([tex]\( B \)[/tex]) when a charged particle is moving in a magnetic field is given by:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
We can rearrange this formula to solve for [tex]\( B \)[/tex]:
[tex]\[ B = \frac{F}{q \cdot v \cdot \sin(\theta)} \][/tex]
Let's calculate this step by step:
1. Convert the angle from degrees to radians:
[tex]\[ \theta = 75^\circ = \frac{75 \times \pi}{180} \text{ radians} \][/tex]
2. Calculate [tex]\( \sin(\theta) \)[/tex]:
[tex]\[ \sin(75^\circ) \][/tex]
3. Plug in the values:
[tex]\[ B = \frac{1.5 \times 10^2 \text{ N}}{(1.4 \times 10^{-7} \text{ C}) \times (1.3 \times 10^6 \text{ m/s}) \times \sin(75^\circ)} \][/tex]
4. Simplify the expression and compute the result.
By following these steps, we obtain:
[tex]\[ B \approx 853.2495992390795 \text{ T} \][/tex]
Therefore, the magnetic field strength is approximately [tex]\( 853.2495992390795 \)[/tex] T. Given the provided choices:
1. [tex]\( 8.2 \times 10^2 \)[/tex] T
2. [tex]\( 8.5 \times 10^2 \)[/tex] T
3. [tex]\( 3.2 \times 10^3 \)[/tex] T
4. [tex]\( 6.4 \times 10^{10} \)[/tex] T
The closest match to our calculated value is:
[tex]\[ 8.5 \times 10^2 \text{ T} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{8.5 \times 10^2 \text{ T}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.