At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

An electron moves with a speed of [tex]2.00 \times 10^7 \, \text{m/s}[/tex] in an orbit in a uniform magnetic field of [tex]1.20 \times 10^{-3} \, \text{T}[/tex]. Calculate the radius of the orbit. (Mass of an electron [tex]= 9.11 \times 10^{-31} \, \text{kg}[/tex], charge on an electron [tex]= 1.61 \times 10^{-19} \, \text{C}[/tex])

Sagot :

To calculate the radius of the orbit of an electron moving in a uniform magnetic field, we will use the formula for the radius of the circular path of a charged particle in a magnetic field. The radius [tex]\( r \)[/tex] is given by:

[tex]\[ r = \frac{m \cdot v}{q \cdot B} \][/tex]

where:
- [tex]\( m \)[/tex] is the mass of the electron
- [tex]\( v \)[/tex] is the speed of the electron
- [tex]\( q \)[/tex] is the charge of the electron
- [tex]\( B \)[/tex] is the magnetic field strength

Given:
- Speed of the electron, [tex]\( v = 2.00 \times 10^7 \, \text{m/s} \)[/tex]
- Magnetic field strength, [tex]\( B = 1.20 \times 10^{-3} \, \text{T} \)[/tex]
- Mass of the electron, [tex]\( m = 9.11 \times 10^{-31} \, \text{kg} \)[/tex]
- Charge of the electron, [tex]\( q = 1.61 \times 10^{-19} \, \text{C} \)[/tex]

Now, let's substitute these values into the formula.

[tex]\[ r = \frac{(9.11 \times 10^{-31} \, \text{kg}) \cdot (2.00 \times 10^7 \, \text{m/s})}{(1.61 \times 10^{-19} \, \text{C}) \cdot (1.20 \times 10^{-3} \, \text{T})} \][/tex]

We calculate the numerator first:
[tex]\[ 9.11 \times 10^{-31} \, \text{kg} \times 2.00 \times 10^7 \, \text{m/s} = 1.822 \times 10^{-23} \, \text{kg} \cdot \text{m/s} \][/tex]

Next, we calculate the denominator:
[tex]\[ 1.61 \times 10^{-19} \, \text{C} \times 1.20 \times 10^{-3} \, \text{T} = 1.932 \times 10^{-22} \, \text{C} \cdot \text{T} \][/tex]

Now, we divide the numerator by the denominator to find the radius:
[tex]\[ r = \frac{1.822 \times 10^{-23}}{1.932 \times 10^{-22}} \approx 0.0943 \, \text{m} \][/tex]

Therefore, the radius of the orbit is approximately [tex]\( 0.0943 \)[/tex] meters.