Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To calculate the radius of the orbit of an electron moving in a uniform magnetic field, we will use the formula for the radius of the circular path of a charged particle in a magnetic field. The radius [tex]\( r \)[/tex] is given by:
[tex]\[ r = \frac{m \cdot v}{q \cdot B} \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the electron
- [tex]\( v \)[/tex] is the speed of the electron
- [tex]\( q \)[/tex] is the charge of the electron
- [tex]\( B \)[/tex] is the magnetic field strength
Given:
- Speed of the electron, [tex]\( v = 2.00 \times 10^7 \, \text{m/s} \)[/tex]
- Magnetic field strength, [tex]\( B = 1.20 \times 10^{-3} \, \text{T} \)[/tex]
- Mass of the electron, [tex]\( m = 9.11 \times 10^{-31} \, \text{kg} \)[/tex]
- Charge of the electron, [tex]\( q = 1.61 \times 10^{-19} \, \text{C} \)[/tex]
Now, let's substitute these values into the formula.
[tex]\[ r = \frac{(9.11 \times 10^{-31} \, \text{kg}) \cdot (2.00 \times 10^7 \, \text{m/s})}{(1.61 \times 10^{-19} \, \text{C}) \cdot (1.20 \times 10^{-3} \, \text{T})} \][/tex]
We calculate the numerator first:
[tex]\[ 9.11 \times 10^{-31} \, \text{kg} \times 2.00 \times 10^7 \, \text{m/s} = 1.822 \times 10^{-23} \, \text{kg} \cdot \text{m/s} \][/tex]
Next, we calculate the denominator:
[tex]\[ 1.61 \times 10^{-19} \, \text{C} \times 1.20 \times 10^{-3} \, \text{T} = 1.932 \times 10^{-22} \, \text{C} \cdot \text{T} \][/tex]
Now, we divide the numerator by the denominator to find the radius:
[tex]\[ r = \frac{1.822 \times 10^{-23}}{1.932 \times 10^{-22}} \approx 0.0943 \, \text{m} \][/tex]
Therefore, the radius of the orbit is approximately [tex]\( 0.0943 \)[/tex] meters.
[tex]\[ r = \frac{m \cdot v}{q \cdot B} \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the electron
- [tex]\( v \)[/tex] is the speed of the electron
- [tex]\( q \)[/tex] is the charge of the electron
- [tex]\( B \)[/tex] is the magnetic field strength
Given:
- Speed of the electron, [tex]\( v = 2.00 \times 10^7 \, \text{m/s} \)[/tex]
- Magnetic field strength, [tex]\( B = 1.20 \times 10^{-3} \, \text{T} \)[/tex]
- Mass of the electron, [tex]\( m = 9.11 \times 10^{-31} \, \text{kg} \)[/tex]
- Charge of the electron, [tex]\( q = 1.61 \times 10^{-19} \, \text{C} \)[/tex]
Now, let's substitute these values into the formula.
[tex]\[ r = \frac{(9.11 \times 10^{-31} \, \text{kg}) \cdot (2.00 \times 10^7 \, \text{m/s})}{(1.61 \times 10^{-19} \, \text{C}) \cdot (1.20 \times 10^{-3} \, \text{T})} \][/tex]
We calculate the numerator first:
[tex]\[ 9.11 \times 10^{-31} \, \text{kg} \times 2.00 \times 10^7 \, \text{m/s} = 1.822 \times 10^{-23} \, \text{kg} \cdot \text{m/s} \][/tex]
Next, we calculate the denominator:
[tex]\[ 1.61 \times 10^{-19} \, \text{C} \times 1.20 \times 10^{-3} \, \text{T} = 1.932 \times 10^{-22} \, \text{C} \cdot \text{T} \][/tex]
Now, we divide the numerator by the denominator to find the radius:
[tex]\[ r = \frac{1.822 \times 10^{-23}}{1.932 \times 10^{-22}} \approx 0.0943 \, \text{m} \][/tex]
Therefore, the radius of the orbit is approximately [tex]\( 0.0943 \)[/tex] meters.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.