Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

An electron moves with a speed of [tex]2.00 \times 10^7 \, \text{m/s}[/tex] in an orbit in a uniform magnetic field of [tex]1.20 \times 10^{-3} \, \text{T}[/tex]. Calculate the radius of the orbit. (Mass of an electron [tex]= 9.11 \times 10^{-31} \, \text{kg}[/tex], charge on an electron [tex]= 1.61 \times 10^{-19} \, \text{C}[/tex])

Sagot :

To calculate the radius of the orbit of an electron moving in a uniform magnetic field, we will use the formula for the radius of the circular path of a charged particle in a magnetic field. The radius [tex]\( r \)[/tex] is given by:

[tex]\[ r = \frac{m \cdot v}{q \cdot B} \][/tex]

where:
- [tex]\( m \)[/tex] is the mass of the electron
- [tex]\( v \)[/tex] is the speed of the electron
- [tex]\( q \)[/tex] is the charge of the electron
- [tex]\( B \)[/tex] is the magnetic field strength

Given:
- Speed of the electron, [tex]\( v = 2.00 \times 10^7 \, \text{m/s} \)[/tex]
- Magnetic field strength, [tex]\( B = 1.20 \times 10^{-3} \, \text{T} \)[/tex]
- Mass of the electron, [tex]\( m = 9.11 \times 10^{-31} \, \text{kg} \)[/tex]
- Charge of the electron, [tex]\( q = 1.61 \times 10^{-19} \, \text{C} \)[/tex]

Now, let's substitute these values into the formula.

[tex]\[ r = \frac{(9.11 \times 10^{-31} \, \text{kg}) \cdot (2.00 \times 10^7 \, \text{m/s})}{(1.61 \times 10^{-19} \, \text{C}) \cdot (1.20 \times 10^{-3} \, \text{T})} \][/tex]

We calculate the numerator first:
[tex]\[ 9.11 \times 10^{-31} \, \text{kg} \times 2.00 \times 10^7 \, \text{m/s} = 1.822 \times 10^{-23} \, \text{kg} \cdot \text{m/s} \][/tex]

Next, we calculate the denominator:
[tex]\[ 1.61 \times 10^{-19} \, \text{C} \times 1.20 \times 10^{-3} \, \text{T} = 1.932 \times 10^{-22} \, \text{C} \cdot \text{T} \][/tex]

Now, we divide the numerator by the denominator to find the radius:
[tex]\[ r = \frac{1.822 \times 10^{-23}}{1.932 \times 10^{-22}} \approx 0.0943 \, \text{m} \][/tex]

Therefore, the radius of the orbit is approximately [tex]\( 0.0943 \)[/tex] meters.