Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To calculate the radius of the orbit of an electron moving in a uniform magnetic field, we will use the formula for the radius of the circular path of a charged particle in a magnetic field. The radius [tex]\( r \)[/tex] is given by:
[tex]\[ r = \frac{m \cdot v}{q \cdot B} \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the electron
- [tex]\( v \)[/tex] is the speed of the electron
- [tex]\( q \)[/tex] is the charge of the electron
- [tex]\( B \)[/tex] is the magnetic field strength
Given:
- Speed of the electron, [tex]\( v = 2.00 \times 10^7 \, \text{m/s} \)[/tex]
- Magnetic field strength, [tex]\( B = 1.20 \times 10^{-3} \, \text{T} \)[/tex]
- Mass of the electron, [tex]\( m = 9.11 \times 10^{-31} \, \text{kg} \)[/tex]
- Charge of the electron, [tex]\( q = 1.61 \times 10^{-19} \, \text{C} \)[/tex]
Now, let's substitute these values into the formula.
[tex]\[ r = \frac{(9.11 \times 10^{-31} \, \text{kg}) \cdot (2.00 \times 10^7 \, \text{m/s})}{(1.61 \times 10^{-19} \, \text{C}) \cdot (1.20 \times 10^{-3} \, \text{T})} \][/tex]
We calculate the numerator first:
[tex]\[ 9.11 \times 10^{-31} \, \text{kg} \times 2.00 \times 10^7 \, \text{m/s} = 1.822 \times 10^{-23} \, \text{kg} \cdot \text{m/s} \][/tex]
Next, we calculate the denominator:
[tex]\[ 1.61 \times 10^{-19} \, \text{C} \times 1.20 \times 10^{-3} \, \text{T} = 1.932 \times 10^{-22} \, \text{C} \cdot \text{T} \][/tex]
Now, we divide the numerator by the denominator to find the radius:
[tex]\[ r = \frac{1.822 \times 10^{-23}}{1.932 \times 10^{-22}} \approx 0.0943 \, \text{m} \][/tex]
Therefore, the radius of the orbit is approximately [tex]\( 0.0943 \)[/tex] meters.
[tex]\[ r = \frac{m \cdot v}{q \cdot B} \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the electron
- [tex]\( v \)[/tex] is the speed of the electron
- [tex]\( q \)[/tex] is the charge of the electron
- [tex]\( B \)[/tex] is the magnetic field strength
Given:
- Speed of the electron, [tex]\( v = 2.00 \times 10^7 \, \text{m/s} \)[/tex]
- Magnetic field strength, [tex]\( B = 1.20 \times 10^{-3} \, \text{T} \)[/tex]
- Mass of the electron, [tex]\( m = 9.11 \times 10^{-31} \, \text{kg} \)[/tex]
- Charge of the electron, [tex]\( q = 1.61 \times 10^{-19} \, \text{C} \)[/tex]
Now, let's substitute these values into the formula.
[tex]\[ r = \frac{(9.11 \times 10^{-31} \, \text{kg}) \cdot (2.00 \times 10^7 \, \text{m/s})}{(1.61 \times 10^{-19} \, \text{C}) \cdot (1.20 \times 10^{-3} \, \text{T})} \][/tex]
We calculate the numerator first:
[tex]\[ 9.11 \times 10^{-31} \, \text{kg} \times 2.00 \times 10^7 \, \text{m/s} = 1.822 \times 10^{-23} \, \text{kg} \cdot \text{m/s} \][/tex]
Next, we calculate the denominator:
[tex]\[ 1.61 \times 10^{-19} \, \text{C} \times 1.20 \times 10^{-3} \, \text{T} = 1.932 \times 10^{-22} \, \text{C} \cdot \text{T} \][/tex]
Now, we divide the numerator by the denominator to find the radius:
[tex]\[ r = \frac{1.822 \times 10^{-23}}{1.932 \times 10^{-22}} \approx 0.0943 \, \text{m} \][/tex]
Therefore, the radius of the orbit is approximately [tex]\( 0.0943 \)[/tex] meters.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.