Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

The function [tex]$f(x)$[/tex] is defined below. What is the end behavior of [tex]$f(x)$[/tex]?

[tex]f(x) = 1536 + 3724x^3 + 4x^6 + 5248x + 6616x^2 + 916x^4 + 100x^5[/tex]

A. As [tex]x \rightarrow \infty, f(x) \rightarrow -\infty[/tex] and as [tex]x \rightarrow -\infty, f(x) \rightarrow \infty[/tex]

B. As [tex]x \rightarrow \infty, f(x) \rightarrow \infty[/tex] and as [tex]x \rightarrow -\infty, f(x) \rightarrow \infty[/tex]

C. As [tex]x \rightarrow \infty, f(x) \rightarrow -\infty[/tex] and as [tex]x \rightarrow -\infty, f(x) \rightarrow -\infty[/tex]

D. As [tex]x \rightarrow \infty, f(x) \rightarrow \infty[/tex] and as [tex]x \rightarrow -\infty, f(x) \rightarrow -\infty[/tex]


Sagot :

To determine the end behavior of the polynomial function [tex]\( f(x) = 1536 + 3724x^3 + 4x^6 + 5248x + 6616x^2 + 916x^4 + 100x^5 \)[/tex], we need to analyze the term with the highest degree, as it dominates the behavior of the polynomial for large positive or negative values of [tex]\( x \)[/tex].

The term with the highest degree in this polynomial is [tex]\( 4x^6 \)[/tex]. Let's consider the end behavior step-by-step:

1. Identify the term with the highest degree:
The highest degree term is [tex]\( 4x^6 \)[/tex].

2. Examine the leading coefficient and the exponent of the highest degree term:
- The coefficient of [tex]\( x^6 \)[/tex] is [tex]\( 4 \)[/tex], which is positive.
- The exponent is [tex]\( 6 \)[/tex], which is even.

3. Determine the behavior as [tex]\( x \to \infty \)[/tex]:
- Since the leading coefficient is positive and the exponent is even, as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex], [tex]\( 4x^6 \)[/tex] becomes very large and positive.
- Hence, as [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].

4. Determine the behavior as [tex]\( x \to -\infty \)[/tex]:
- With [tex]\( x \)[/tex] being very negative and raised to an even power, [tex]\( (-x)^6 \)[/tex] still results in a positive value.
- Thus, as [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex], [tex]\( 4x^6 \)[/tex] also becomes very large and positive.
- Hence, as [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].

Therefore, the end behavior of the polynomial function [tex]\( f(x) \)[/tex] is as follows:

- As [tex]\( x \rightarrow \infty \)[/tex], [tex]\( f(x) \rightarrow \infty \)[/tex].
- As [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( f(x) \rightarrow \infty \)[/tex].

So, the correct answer is:
[tex]\[ \text{as } x \rightarrow \infty, f(x) \rightarrow \infty \text{ and as } x \rightarrow -\infty, f(x) \rightarrow \infty \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.