Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve this problem, we need to determine the magnitude of the charge on the particle given the following data:
- Velocity ([tex]\( v \)[/tex]) = [tex]\( 2.5 \times 10^4 \)[/tex] m/s
- Angle ([tex]\( \theta \)[/tex]) = [tex]\( 25^\circ \)[/tex]
- Magnetic field strength ([tex]\( B \)[/tex]) = [tex]\( 8.1 \times 10^{-2} \)[/tex] T
- Magnetic force ([tex]\( F \)[/tex]) = [tex]\( 7.5 \times 10^{-2} \)[/tex] N
Let's use the formula for the magnetic force acting on a charged particle moving in a magnetic field:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
Where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field.
First, we need to convert the angle from degrees to radians because the trigonometric functions in scientific calculations typically use radians.
[tex]\[ \theta_{\text{rad}} = \theta_{\text{deg}} \times \left( \frac{\pi}{180} \right) \][/tex]
Therefore:
[tex]\[ \theta_{\text{rad}} = 25^\circ \times \left( \frac{\pi}{180} \right) \approx 0.436 \text{ radians} \][/tex]
Now, rearrange the formula to solve for [tex]\( q \)[/tex]:
[tex]\[ q = \frac{F}{v \cdot B \cdot \sin(\theta_{\text{rad}})} \][/tex]
Plugging the known values into the formula:
[tex]\[ q = \frac{7.5 \times 10^{-2}}{2.5 \times 10^4 \cdot 8.1 \times 10^{-2} \cdot \sin(0.436)} \][/tex]
Here, [tex]\(\sin(0.436)\)[/tex] is approximately 0.4226. Now calculate the charge:
[tex]\[ q = \frac{7.5 \times 10^{-2}}{2.5 \times 10^4 \cdot 8.1 \times 10^{-2} \cdot 0.4226} \][/tex]
Simplifying this:
[tex]\[ q = \frac{7.5 \times 10^{-2}}{856.2} \][/tex]
[tex]\[ q \approx 8.76 \times 10^{-5} \, \text{C} \][/tex]
Comparing this result with the given options:
- [tex]\( 3.7 \times 10^{-5} \)[/tex] C
- [tex]\( 4.1 \times 10^{-5} \)[/tex] C
- [tex]\( 8.8 \times 10^{-5} \)[/tex] C
- [tex]\( 1.0 \times 10^{-4} \)[/tex] C
The closest value to [tex]\( 8.76 \times 10^{-5} \)[/tex] C is [tex]\( 8.8 \times 10^{-5} \)[/tex] C.
Therefore, the magnitude of the charge is approximately [tex]\( 8.8 \times 10^{-5} \)[/tex] C.
- Velocity ([tex]\( v \)[/tex]) = [tex]\( 2.5 \times 10^4 \)[/tex] m/s
- Angle ([tex]\( \theta \)[/tex]) = [tex]\( 25^\circ \)[/tex]
- Magnetic field strength ([tex]\( B \)[/tex]) = [tex]\( 8.1 \times 10^{-2} \)[/tex] T
- Magnetic force ([tex]\( F \)[/tex]) = [tex]\( 7.5 \times 10^{-2} \)[/tex] N
Let's use the formula for the magnetic force acting on a charged particle moving in a magnetic field:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
Where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field.
First, we need to convert the angle from degrees to radians because the trigonometric functions in scientific calculations typically use radians.
[tex]\[ \theta_{\text{rad}} = \theta_{\text{deg}} \times \left( \frac{\pi}{180} \right) \][/tex]
Therefore:
[tex]\[ \theta_{\text{rad}} = 25^\circ \times \left( \frac{\pi}{180} \right) \approx 0.436 \text{ radians} \][/tex]
Now, rearrange the formula to solve for [tex]\( q \)[/tex]:
[tex]\[ q = \frac{F}{v \cdot B \cdot \sin(\theta_{\text{rad}})} \][/tex]
Plugging the known values into the formula:
[tex]\[ q = \frac{7.5 \times 10^{-2}}{2.5 \times 10^4 \cdot 8.1 \times 10^{-2} \cdot \sin(0.436)} \][/tex]
Here, [tex]\(\sin(0.436)\)[/tex] is approximately 0.4226. Now calculate the charge:
[tex]\[ q = \frac{7.5 \times 10^{-2}}{2.5 \times 10^4 \cdot 8.1 \times 10^{-2} \cdot 0.4226} \][/tex]
Simplifying this:
[tex]\[ q = \frac{7.5 \times 10^{-2}}{856.2} \][/tex]
[tex]\[ q \approx 8.76 \times 10^{-5} \, \text{C} \][/tex]
Comparing this result with the given options:
- [tex]\( 3.7 \times 10^{-5} \)[/tex] C
- [tex]\( 4.1 \times 10^{-5} \)[/tex] C
- [tex]\( 8.8 \times 10^{-5} \)[/tex] C
- [tex]\( 1.0 \times 10^{-4} \)[/tex] C
The closest value to [tex]\( 8.76 \times 10^{-5} \)[/tex] C is [tex]\( 8.8 \times 10^{-5} \)[/tex] C.
Therefore, the magnitude of the charge is approximately [tex]\( 8.8 \times 10^{-5} \)[/tex] C.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.