Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, we need to determine the magnitude of the charge on the particle given the following data:
- Velocity ([tex]\( v \)[/tex]) = [tex]\( 2.5 \times 10^4 \)[/tex] m/s
- Angle ([tex]\( \theta \)[/tex]) = [tex]\( 25^\circ \)[/tex]
- Magnetic field strength ([tex]\( B \)[/tex]) = [tex]\( 8.1 \times 10^{-2} \)[/tex] T
- Magnetic force ([tex]\( F \)[/tex]) = [tex]\( 7.5 \times 10^{-2} \)[/tex] N
Let's use the formula for the magnetic force acting on a charged particle moving in a magnetic field:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
Where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field.
First, we need to convert the angle from degrees to radians because the trigonometric functions in scientific calculations typically use radians.
[tex]\[ \theta_{\text{rad}} = \theta_{\text{deg}} \times \left( \frac{\pi}{180} \right) \][/tex]
Therefore:
[tex]\[ \theta_{\text{rad}} = 25^\circ \times \left( \frac{\pi}{180} \right) \approx 0.436 \text{ radians} \][/tex]
Now, rearrange the formula to solve for [tex]\( q \)[/tex]:
[tex]\[ q = \frac{F}{v \cdot B \cdot \sin(\theta_{\text{rad}})} \][/tex]
Plugging the known values into the formula:
[tex]\[ q = \frac{7.5 \times 10^{-2}}{2.5 \times 10^4 \cdot 8.1 \times 10^{-2} \cdot \sin(0.436)} \][/tex]
Here, [tex]\(\sin(0.436)\)[/tex] is approximately 0.4226. Now calculate the charge:
[tex]\[ q = \frac{7.5 \times 10^{-2}}{2.5 \times 10^4 \cdot 8.1 \times 10^{-2} \cdot 0.4226} \][/tex]
Simplifying this:
[tex]\[ q = \frac{7.5 \times 10^{-2}}{856.2} \][/tex]
[tex]\[ q \approx 8.76 \times 10^{-5} \, \text{C} \][/tex]
Comparing this result with the given options:
- [tex]\( 3.7 \times 10^{-5} \)[/tex] C
- [tex]\( 4.1 \times 10^{-5} \)[/tex] C
- [tex]\( 8.8 \times 10^{-5} \)[/tex] C
- [tex]\( 1.0 \times 10^{-4} \)[/tex] C
The closest value to [tex]\( 8.76 \times 10^{-5} \)[/tex] C is [tex]\( 8.8 \times 10^{-5} \)[/tex] C.
Therefore, the magnitude of the charge is approximately [tex]\( 8.8 \times 10^{-5} \)[/tex] C.
- Velocity ([tex]\( v \)[/tex]) = [tex]\( 2.5 \times 10^4 \)[/tex] m/s
- Angle ([tex]\( \theta \)[/tex]) = [tex]\( 25^\circ \)[/tex]
- Magnetic field strength ([tex]\( B \)[/tex]) = [tex]\( 8.1 \times 10^{-2} \)[/tex] T
- Magnetic force ([tex]\( F \)[/tex]) = [tex]\( 7.5 \times 10^{-2} \)[/tex] N
Let's use the formula for the magnetic force acting on a charged particle moving in a magnetic field:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
Where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\( \theta \)[/tex] is the angle between the velocity and the magnetic field.
First, we need to convert the angle from degrees to radians because the trigonometric functions in scientific calculations typically use radians.
[tex]\[ \theta_{\text{rad}} = \theta_{\text{deg}} \times \left( \frac{\pi}{180} \right) \][/tex]
Therefore:
[tex]\[ \theta_{\text{rad}} = 25^\circ \times \left( \frac{\pi}{180} \right) \approx 0.436 \text{ radians} \][/tex]
Now, rearrange the formula to solve for [tex]\( q \)[/tex]:
[tex]\[ q = \frac{F}{v \cdot B \cdot \sin(\theta_{\text{rad}})} \][/tex]
Plugging the known values into the formula:
[tex]\[ q = \frac{7.5 \times 10^{-2}}{2.5 \times 10^4 \cdot 8.1 \times 10^{-2} \cdot \sin(0.436)} \][/tex]
Here, [tex]\(\sin(0.436)\)[/tex] is approximately 0.4226. Now calculate the charge:
[tex]\[ q = \frac{7.5 \times 10^{-2}}{2.5 \times 10^4 \cdot 8.1 \times 10^{-2} \cdot 0.4226} \][/tex]
Simplifying this:
[tex]\[ q = \frac{7.5 \times 10^{-2}}{856.2} \][/tex]
[tex]\[ q \approx 8.76 \times 10^{-5} \, \text{C} \][/tex]
Comparing this result with the given options:
- [tex]\( 3.7 \times 10^{-5} \)[/tex] C
- [tex]\( 4.1 \times 10^{-5} \)[/tex] C
- [tex]\( 8.8 \times 10^{-5} \)[/tex] C
- [tex]\( 1.0 \times 10^{-4} \)[/tex] C
The closest value to [tex]\( 8.76 \times 10^{-5} \)[/tex] C is [tex]\( 8.8 \times 10^{-5} \)[/tex] C.
Therefore, the magnitude of the charge is approximately [tex]\( 8.8 \times 10^{-5} \)[/tex] C.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.