At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Find the arc length [tex]\( s \)[/tex] of the vector function [tex]\( \mathbf{r}(t) = 2 \sin(2t) \mathbf{i} - 5 \cos(t) \mathbf{j} \)[/tex] from [tex]\( t = 0 \)[/tex] to [tex]\( t = \frac{\pi}{2} \)[/tex].

Sagot :

To find the arc length [tex]\( s \)[/tex] of the vector function [tex]\(\mathbf{r}(t) = 2 \sin(2t) \mathbf{i} - 5 \cos(t) \mathbf{j}\)[/tex] from [tex]\(t = 0\)[/tex] to [tex]\(t = \frac{\pi}{2}\)[/tex], we can follow these steps:

1. Find the derivative of [tex]\(\mathbf{r}(t)\)[/tex] with respect to [tex]\(t\)[/tex]:

[tex]\[ \mathbf{r}(t) = \begin{pmatrix} 2 \sin(2t) \\ -5 \cos(t) \end{pmatrix} \][/tex]

To find [tex]\(\mathbf{r}'(t)\)[/tex]:

[tex]\[ \mathbf{r}'(t) = \begin{pmatrix} 2 \frac{d}{dt} \sin(2t) \\ -5 \frac{d}{dt} \cos(t) \end{pmatrix} \][/tex]

Using the chain rule and standard derivatives:

[tex]\[ \frac{d}{dt} \sin(2t) = 2 \cos(2t) \][/tex]

And:

[tex]\[ \frac{d}{dt} \cos(t) = - \sin(t) \][/tex]

Therefore:

[tex]\[ \mathbf{r}'(t) = \begin{pmatrix} 2 \cdot 2 \cos(2t) \\ -5 \cdot (-\sin(t)) \end{pmatrix} = \begin{pmatrix} 4 \cos(2t) \\ 5 \sin(t) \end{pmatrix} \][/tex]

2. Find the magnitude of [tex]\(\mathbf{r}'(t)\)[/tex]:

The magnitude of [tex]\(\mathbf{r}'(t)\)[/tex] is given by:

[tex]\[ \|\mathbf{r}'(t)\| = \sqrt{\left(4 \cos(2t)\right)^2 + \left(5 \sin(t)\right)^2} \][/tex]

Simplifying inside the square root:

[tex]\[ \|\mathbf{r}'(t)\| = \sqrt{16 \cos^2(2t) + 25 \sin^2(t)} \][/tex]

3. Set up the integral for the arc length [tex]\(s\)[/tex]:

The arc length [tex]\(s\)[/tex] is the integral of the magnitude of [tex]\(\mathbf{r}'(t)\)[/tex] with respect to [tex]\(t\)[/tex] from [tex]\(t = 0\)[/tex] to [tex]\(t = \frac{\pi}{2}\)[/tex]:

[tex]\[ s = \int_{0}^{\frac{\pi}{2}} \|\mathbf{r}'(t)\| \, dt = \int_{0}^{\frac{\pi}{2}} \sqrt{16 \cos^2(2t) + 25 \sin^2(t)} \, dt \][/tex]

Hence, the solution gives us the derivative of the vector function, the magnitude of the derivative, and the integral representing the arc length. Specifically, the results are:

1. The derivative of [tex]\(\mathbf{r}(t)\)[/tex]:
[tex]\[ \mathbf{r}'(t) = \begin{pmatrix} 4 \cos(2t) \\ 5 \sin(t) \end{pmatrix} \][/tex]

2. The magnitude of [tex]\(\mathbf{r}'(t)\)[/tex]:
[tex]\[ \sqrt{16 \cos^2(2t) + 25 \sin^2(t)} \][/tex]

3. The integral representing the arc length [tex]\(s\)[/tex]:
[tex]\[ \int_{0}^{\frac{\pi}{2}} \sqrt{16 \cos^2(2t) + 25 \sin^2(t)} \, dt \][/tex]