Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the magnitude of the magnetic force acting on the charge, we can use the formula for the magnetic force on a moving charge, which is given by:
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\( \theta \)[/tex] is the angle between the velocity vector and the magnetic field direction.
The given data is:
- The charge [tex]\( q = 6.8 \mu C \)[/tex] (which is [tex]\( 6.8 \times 10^{-6} \)[/tex] Coulombs),
- The velocity [tex]\( v = 6.5 \times 10^4 \)[/tex] meters per second,
- The angle [tex]\( \theta = 15^\circ \)[/tex],
- The magnetic field strength [tex]\( B = 1.4 \)[/tex] Tesla.
First, we need to convert the angle in degrees to radians because the sine function in our formula requires the angle to be in radians.
[tex]\[ \theta = 15^\circ \][/tex]
[tex]\[ \theta_{rad} = \frac{15 \times \pi}{180} \][/tex]
[tex]\[ \theta_{rad} \approx 0.2618 \text{ radians} \][/tex]
Now we can plug the values into the formula:
[tex]\[ F = 6.8 \times 10^{-6} \, \text{C} \times 6.5 \times 10^4 \, \text{m/s} \times 1.4 \, \text{T} \times \sin(0.2618) \][/tex]
Using the sine value [tex]\( \sin(0.2618) \approx 0.2588 \)[/tex],
[tex]\[ F \approx 6.8 \times 10^{-6} \times 6.5 \times 10^4 \times 1.4 \times 0.2588 \][/tex]
[tex]\[ F \approx 0.16015722510943983 \][/tex]
Rounding this result to two significant figures, we get:
[tex]\[ F \approx 0.16 \, \text{N} \][/tex]
Therefore, the magnitude of the magnetic force acting on the charge is closest to:
[tex]\[ 1.6 \times 10^{-1} \, \text{N} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{1.6 \times 10^{-1} \, \text{N}} \][/tex]
[tex]\[ F = q \cdot v \cdot B \cdot \sin(\theta) \][/tex]
where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\( \theta \)[/tex] is the angle between the velocity vector and the magnetic field direction.
The given data is:
- The charge [tex]\( q = 6.8 \mu C \)[/tex] (which is [tex]\( 6.8 \times 10^{-6} \)[/tex] Coulombs),
- The velocity [tex]\( v = 6.5 \times 10^4 \)[/tex] meters per second,
- The angle [tex]\( \theta = 15^\circ \)[/tex],
- The magnetic field strength [tex]\( B = 1.4 \)[/tex] Tesla.
First, we need to convert the angle in degrees to radians because the sine function in our formula requires the angle to be in radians.
[tex]\[ \theta = 15^\circ \][/tex]
[tex]\[ \theta_{rad} = \frac{15 \times \pi}{180} \][/tex]
[tex]\[ \theta_{rad} \approx 0.2618 \text{ radians} \][/tex]
Now we can plug the values into the formula:
[tex]\[ F = 6.8 \times 10^{-6} \, \text{C} \times 6.5 \times 10^4 \, \text{m/s} \times 1.4 \, \text{T} \times \sin(0.2618) \][/tex]
Using the sine value [tex]\( \sin(0.2618) \approx 0.2588 \)[/tex],
[tex]\[ F \approx 6.8 \times 10^{-6} \times 6.5 \times 10^4 \times 1.4 \times 0.2588 \][/tex]
[tex]\[ F \approx 0.16015722510943983 \][/tex]
Rounding this result to two significant figures, we get:
[tex]\[ F \approx 0.16 \, \text{N} \][/tex]
Therefore, the magnitude of the magnetic force acting on the charge is closest to:
[tex]\[ 1.6 \times 10^{-1} \, \text{N} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{1.6 \times 10^{-1} \, \text{N}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.