Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the mean distance of Jupiter from the center of the Sun, we start with Kepler's third law of planetary motion, given by the equation:
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]
Here:
- [tex]\( T \)[/tex] is the period of revolution, which is [tex]\( 3.79 \times 10^8 \)[/tex] seconds.
- [tex]\( M \)[/tex] is the mass of the Sun, which is [tex]\( 1.99 \times 10^{30} \)[/tex] kilograms.
- [tex]\( G \)[/tex] is the gravitational constant, which is [tex]\( 6.67 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)[/tex].
- [tex]\( \pi \approx 3.14 \)[/tex].
- [tex]\( r \)[/tex] is the mean distance from the center of the Sun, which we need to find.
First, we rearrange the equation to solve for [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{T^2 G M}{4 \pi^2} \][/tex]
Next, we substitute the known values into the equation:
[tex]\[ r^3 = \frac{(3.79 \times 10^8)^2 \times 6.67 \times 10^{-11} \times 1.99 \times 10^{30}}{4 \times (3.14)^2} \][/tex]
We calculate the numerator and the denominator separately:
1. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \][/tex]
2. Multiply by [tex]\( G \)[/tex] and [tex]\( M \)[/tex]:
[tex]\[ 1.43641 \times 10^{17} \times 6.67 \times 10^{-11} \times 1.99 \times 10^{30} = 1.90979499 \times 10^{37} \][/tex]
3. Calculate [tex]\( 4 \pi^2 \)[/tex]:
[tex]\[ 4 \times 3.14^2 = 4 \times 9.8596 = 39.4384 \][/tex]
Finally, divide the results to find [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{1.90979499 \times 10^{37}}{39.4384} \approx 4.84 \times 10^{35} \][/tex]
To find [tex]\( r \)[/tex], take the cube root of [tex]\( r^3 \)[/tex]:
[tex]\[ r = \left( 4.84 \times 10^{35} \right)^{1/3} \][/tex]
Approximating the cube root:
[tex]\[ r \approx 7.8 \times 10^{11} \, \text{meters} \][/tex]
Thus, the mean distance of Jupiter from the center of the Sun is approximately [tex]\( 7.8 \times 10^{11} \)[/tex] meters. The correct answer is:
E. [tex]\( 7.8 \times 10^{11} \)[/tex] meters
[tex]\[ T^2 = \frac{4 \pi^2}{G M} r^3 \][/tex]
Here:
- [tex]\( T \)[/tex] is the period of revolution, which is [tex]\( 3.79 \times 10^8 \)[/tex] seconds.
- [tex]\( M \)[/tex] is the mass of the Sun, which is [tex]\( 1.99 \times 10^{30} \)[/tex] kilograms.
- [tex]\( G \)[/tex] is the gravitational constant, which is [tex]\( 6.67 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)[/tex].
- [tex]\( \pi \approx 3.14 \)[/tex].
- [tex]\( r \)[/tex] is the mean distance from the center of the Sun, which we need to find.
First, we rearrange the equation to solve for [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{T^2 G M}{4 \pi^2} \][/tex]
Next, we substitute the known values into the equation:
[tex]\[ r^3 = \frac{(3.79 \times 10^8)^2 \times 6.67 \times 10^{-11} \times 1.99 \times 10^{30}}{4 \times (3.14)^2} \][/tex]
We calculate the numerator and the denominator separately:
1. Calculate [tex]\( T^2 \)[/tex]:
[tex]\[ T^2 = (3.79 \times 10^8)^2 = 1.43641 \times 10^{17} \][/tex]
2. Multiply by [tex]\( G \)[/tex] and [tex]\( M \)[/tex]:
[tex]\[ 1.43641 \times 10^{17} \times 6.67 \times 10^{-11} \times 1.99 \times 10^{30} = 1.90979499 \times 10^{37} \][/tex]
3. Calculate [tex]\( 4 \pi^2 \)[/tex]:
[tex]\[ 4 \times 3.14^2 = 4 \times 9.8596 = 39.4384 \][/tex]
Finally, divide the results to find [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{1.90979499 \times 10^{37}}{39.4384} \approx 4.84 \times 10^{35} \][/tex]
To find [tex]\( r \)[/tex], take the cube root of [tex]\( r^3 \)[/tex]:
[tex]\[ r = \left( 4.84 \times 10^{35} \right)^{1/3} \][/tex]
Approximating the cube root:
[tex]\[ r \approx 7.8 \times 10^{11} \, \text{meters} \][/tex]
Thus, the mean distance of Jupiter from the center of the Sun is approximately [tex]\( 7.8 \times 10^{11} \)[/tex] meters. The correct answer is:
E. [tex]\( 7.8 \times 10^{11} \)[/tex] meters
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.