Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve for the values of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] for the partial fraction decomposition of the given function, we follow these steps:
1. Given Expression: We start with the fraction:
[tex]\[ \frac{x}{x^2 - 5x + 6} \][/tex]
2. Factor the Denominator: The denominator [tex]\( x^2 - 5x + 6 \)[/tex] factors into:
[tex]\[ x^2 - 5x + 6 = (x - 2)(x - 3) \][/tex]
3. Set up the Partial Fractions: We express the fraction as a sum of partial fractions with unknown coefficients [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ \frac{x}{(x-2)(x-3)} = \frac{A}{x-2} + \frac{B}{x-3} \][/tex]
4. Combine the Fractions on the Right-Hand Side: To combine the fractions, we write:
[tex]\[ \frac{A}{x-2} + \frac{B}{x-3} = \frac{A(x-3) + B(x-2)}{(x-2)(x-3)} \][/tex]
5. Set the Numerators Equal: Since the denominators are the same, we can equate the numerators:
[tex]\[ x = A(x-3) + B(x-2) \][/tex]
6. Expand the Right-Hand Side: Distribute [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ x = Ax - 3A + Bx - 2B \][/tex]
7. Combine Like Terms: Combine the terms involving [tex]\( x \)[/tex]:
[tex]\[ x = (A + B)x - 3A - 2B \][/tex]
8. Set up a System of Equations: For the equation [tex]\( x = (A + B)x - 3A - 2B \)[/tex] to hold for all [tex]\( x \)[/tex], the coefficients on both sides must be equal. This gives us two simultaneous equations:
[tex]\[ A + B = 1 \][/tex]
[tex]\[ -3A - 2B = 0 \][/tex]
9. Solve the System of Equations:
- From the first equation, solve for [tex]\( A \)[/tex]:
[tex]\[ A = 1 - B \][/tex]
- Substitute [tex]\( A = 1 - B \)[/tex] into the second equation:
[tex]\[ -3(1 - B) - 2B = 0 \][/tex]
- Simplify and solve for [tex]\( B \)[/tex]:
[tex]\[ -3 + 3B - 2B = 0 \][/tex]
[tex]\[ 3B - 2B = 3 \][/tex]
[tex]\[ B = 3 \][/tex]
- Substitute [tex]\( B = 3 \)[/tex] back into [tex]\( A = 1 - B \)[/tex]:
[tex]\[ A = 1 - 3 \][/tex]
[tex]\[ A = -2 \][/tex]
Thus, the values of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are:
[tex]\[ A = -2 \quad \text{and} \quad B = 3 \][/tex]
Therefore, the correct answer is:
[tex]\[ (-2, 3) \][/tex]
1. Given Expression: We start with the fraction:
[tex]\[ \frac{x}{x^2 - 5x + 6} \][/tex]
2. Factor the Denominator: The denominator [tex]\( x^2 - 5x + 6 \)[/tex] factors into:
[tex]\[ x^2 - 5x + 6 = (x - 2)(x - 3) \][/tex]
3. Set up the Partial Fractions: We express the fraction as a sum of partial fractions with unknown coefficients [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ \frac{x}{(x-2)(x-3)} = \frac{A}{x-2} + \frac{B}{x-3} \][/tex]
4. Combine the Fractions on the Right-Hand Side: To combine the fractions, we write:
[tex]\[ \frac{A}{x-2} + \frac{B}{x-3} = \frac{A(x-3) + B(x-2)}{(x-2)(x-3)} \][/tex]
5. Set the Numerators Equal: Since the denominators are the same, we can equate the numerators:
[tex]\[ x = A(x-3) + B(x-2) \][/tex]
6. Expand the Right-Hand Side: Distribute [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ x = Ax - 3A + Bx - 2B \][/tex]
7. Combine Like Terms: Combine the terms involving [tex]\( x \)[/tex]:
[tex]\[ x = (A + B)x - 3A - 2B \][/tex]
8. Set up a System of Equations: For the equation [tex]\( x = (A + B)x - 3A - 2B \)[/tex] to hold for all [tex]\( x \)[/tex], the coefficients on both sides must be equal. This gives us two simultaneous equations:
[tex]\[ A + B = 1 \][/tex]
[tex]\[ -3A - 2B = 0 \][/tex]
9. Solve the System of Equations:
- From the first equation, solve for [tex]\( A \)[/tex]:
[tex]\[ A = 1 - B \][/tex]
- Substitute [tex]\( A = 1 - B \)[/tex] into the second equation:
[tex]\[ -3(1 - B) - 2B = 0 \][/tex]
- Simplify and solve for [tex]\( B \)[/tex]:
[tex]\[ -3 + 3B - 2B = 0 \][/tex]
[tex]\[ 3B - 2B = 3 \][/tex]
[tex]\[ B = 3 \][/tex]
- Substitute [tex]\( B = 3 \)[/tex] back into [tex]\( A = 1 - B \)[/tex]:
[tex]\[ A = 1 - 3 \][/tex]
[tex]\[ A = -2 \][/tex]
Thus, the values of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are:
[tex]\[ A = -2 \quad \text{and} \quad B = 3 \][/tex]
Therefore, the correct answer is:
[tex]\[ (-2, 3) \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.